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Abstract— This paper presents a model-free reinforcement
learning (RL) algorithm to synthesize a control policy that
maximizes the satisfaction probability of complex tasks, which
are expressed by linear temporal logic (LTL) specifications. Due
to the consideration of environment and motion uncertainties,
we model the robot motion as a probabilistic labeled
Markov decision process (PL-MDP) with unknown transition
probabilities and probabilistic labeling functions. The LTL task
specification is converted to a limit deterministic generalized
Büchi automaton (LDGBA) with several accepting sets to
maintain dense rewards during learning. The novelty of
applying LDGBA is to construct an embedded LDGBA (E-
LDGBA) by designing a synchronous tracking-frontier function,
which enables the record of non-visited accepting sets of
LDGBA at each round of the repeated visiting pattern, to
overcome the difficulties of directly applying conventional
LDGBA. With appropriate dependent reward and discount
functions, rigorous analysis shows that any method, which
optimizes the expected discount return of the RL-based
approach, is guaranteed to find the optimal policy to maximize
the satisfaction probability of the LTL specifications. A model-
free RL-based motion planning strategy is developed to generate
the optimal policy in this paper. The effectiveness of the RL-
based control synthesis is demonstrated via simulation and
experimental results.

I. INTRODUCTION

Temporal logic has rich expressivity in describing complex
high-level tasks beyond traditional go-to-goal navigation for
robotic systems [1]–[3]. Due to a variety of uncertainties
(e.g., transition probabilities and environment uncertainties),
the robot’s probabilistic motion is often modeled by a
Markov decision process (MDP). Growing research has
been devoted to investigating the motion planning of an
MDP satisfying linear temporal logic (LTL) constraints. With
the assumption of full knowledge of MDP, one common
objective is to maximize the probability of accomplishing
tasks [4]–[7]. Yet, it raises some challenges when the MDP
is not fully known a priori. Hence, this work focuses on
motion planning that maximizes the satisfaction probability
of given tasks over an uncertain MDP.

Reinforcement learning (RL) is a widely-used approach
for sequential decision-making problems [8]. When
integrating with LTL specifications, model-based RL has
been employed in [9]–[11] to generate policies to satisfy
LTL tasks by learning unknown parameters of the MDP.
However, there is a scalability issue due to the high need
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of memory to store the learned models. On the other hand,
model-free RL generates policies to satisfy LTL formulas
by designing appropriate accepting rewards to optimize Q
values [12]–[19]. In [12], the robustness degree of truncated
linear temporal logic (TLTL) was used as reward to facilitate
learning. The deterministic finite automaton (DFA) was
applied as reward machines in [20]–[22]. However, only
finite horizon motion planning was considered in [12],
[20]–[22].

Related works: This work extends previous research
to tasks over infinite horizon, where finite horizon motion
planning can be regarded as a special case of the infinite
horizon setting. Along this line of research, in [13] and
[14], LTL constraints were translated to Deterministic Rabin
Automata (DRA), which may fail to find desired policies as
discussed in [15]. Instead of using DRA, limit-deterministic
Buchi automaton (LDBA) was employed in [15] and [16]
without considering the workspace uncertainties. Moreover,
since LDBA in works [15] and [16] only has one accepting
set, it might lead to sparse reward issues during learning.
In [17], limit-deterministic generalized Buchi automaton
(LDGBA) was used, and a frontier function of rewards
was designed to facilitate learning by assigning positive
rewards to the accepting sets. However, directly applying
the LDGBA as in [17] may fail to satisfy the LTL
specification when applying the deterministic policy and such
a drawback was also presented in [18]. Such an issue may
be solved via selecting these actions based on the uniform
distribution when applying the tubular RL method. However,
the application of deterministic policies is crucial in practice
especially for the continuous space, since many widely-
applied deep RL methods adopt the actor-critic architecture,
e.g., deep deterministic policy gradients (DDPG) and trust
region policy optimization (TRPO), for high dimensional
analysis. The works of [18] and [19] overcome this issue
by designing binary-valued vectors and Boolean vectors,
respectively. However, both [18] and [19] cannot guarantee
the maximum probability of task satisfaction.

Contributions: Our framework studies motion planning
that maximizes the probability of satisfying pre-specified
LTL tasks in stochastic systems. Considering both motion
and environment uncertainties, the robotic system is
modeled as a probabilistic labeled Markov decision
process (PL-MDP) with unknown transition probabilities
and probabilistic labels. In this work, a synchronous
tracking-frontier function is designed to construct an
embedded LDGBA (E-LDGBA) from convention LDGBA,
which is capable of recording non-visited accepting sets
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and incorporating deterministic policies. We construct the
embedded product MDP (EP-MDP) between E-LDGBA and
PL-MDP, and propose a new expected return by applying
the reward and discount functions of [16]. Rigorous analysis
shows that our framework is guaranteed to find the optimal
policy that maximizes the probability of satisfying LTL
specifications.

II. PRELIMINARIES

A. Probabilistic Labeled MDP

A PL-MDP is a tuple M = (S,A, pS , (s0, l0) ,Π, L, pL),
where S is a finite state space, A is a finite action space,
pS : S×A×S � [0, 1] is the transition probability function,
Π is a set of atomic propositions, and L : S � 2Π is a
labeling function. The pair (s0, l0) denotes an initial state
s0 ∈ S and an initial label l0 ∈ L (s0). The function pL (s, l)
denotes the probability of l ⊆ L (s) associated with s ∈ S
satisfying

∑
l∈L(s) pL (s, l) = 1, ∀s ∈ S. For simplicity, let

A(s) denote the set of actions that can be taken in state s. The
transition probability pS captures the motion uncertainties
of the agent while the labeling probability pL captures the
environment uncertainties. It is assumed that pS and pL are
not known a priori, and the agent can only observe its current
state and the associated labels. Note that the standard MDP
model can be regarded as a special case of PL-MDP with
the deterministic label function.

Let ξ be a deterministic action function such that ξ : S →
A maps a state s ∈ S to an action in A (s). The PL-MDPM
evolves by taking an action ξi at each stage i, and thus the
control policy ξ = ξ0ξ1 . . . is a sequence of actions, which
yields a path s = s0s1s2 . . . overM with pS (si, ai, si+1) >
0 for all i. If ξi = ξ for all i, then ξ is called a stationary
policy. The control policy ξ is memoryless if each ξi only
depends on its current state, and ξ is called a finite memory
policy if ξi depends on its past states.

Let Λ : S×A×S � R denote a reward function. Given a
discount function γ : S×A×S � R, the expected discounted
return under policy ξ starting from s ∈ S is defined as

Uξ (s) = Eξ
[ ∞∑
i=0

γi (si, ai, si+1) · Λ (si, ai, si+1) |s0 = s

]
.

An optimal policy ξ∗ that maximizes the expected return for
each state s ∈ S is defined as ξ∗ = arg max

ξ
Uξ (s) . The

function Uξ (s) is often referred to as the value function
under policy ξ. If the MDP is not fully known, but the state
and action spaces are countably finite, tabular approaches are
usually employed [8].

B. LTL and LDGBA

An LTL is built on atomic propositions, Boolean operators,
and temporal operators [1]. Given an LTL that specifies the
missions, the satisfaction of the LTL can be evaluated by an
LDGBA [23]. Before defining LDGBA, we first introduce
the generalized Büchi automaton (GBA).

Definition 1. A GBA is a tuple A = (Q,Σ, δ, q0, F ), where

Q is a finite set of states; Σ = 2Π is a finite alphabet, δ : Q×
Σ � 2Q is the transition function, q0 ∈ Q is an initial state,
and F = {F1, F2, . . . , Ff} is a set of accepting sets with
Fi ⊆ Q, ∀i ∈ {1, . . . f}.

Denote by q = q0q1 . . . a run of a GBA, where qi ∈ Q, i =
0, 1, . . .. The run q is accepted by the GBA, if it satisfies the
generalized Büchi acceptance condition, i.e., inf (q)∩Fi 6= ∅,
∀i ∈ {1, . . . f}, where inf (q) denotes the infinitely part of
q.

Definition 2. A GBA is an LDGBA if the transition function
δ is extended to Q × (Σ ∪ {ε}) � 2Q, and the state set
Q is partitioned into a deterministic set QD and a non-
deterministic set QN , i.e., QD∪QN = Q and QD∩QN = ∅,
where
• the state transitions in QD are total and restricted within

it, i.e.,
∣∣δ (q, α)

∣∣ = 1 and δ (q, α) ⊆ QD for every state
q ∈ QD and α ∈ Σ,

• the ε-transition is not allowed in the deterministic set,
i.e., for any q ∈ QD, δ (q, ε) = ∅, and

• the accepting sets are only in the deterministic set, i.e.,
Fi ⊆ QD for every Fi ∈ F .

In Definition 2, the ε-transitions are only defined for state
transitions from QN to QD, which do not consume the input
alphabet.

III. PROBLEM STATEMENTS

The task specification to be performed by the robot is
described by an LTL formula φ over Π. Given Task φ,
the PL-MDP M, and a policy ξ = ξ0ξ1 . . ., the induced
path sξ∞ = s0 . . . sisi+1 . . . over M satisfies si+1 ∈{
s ∈ S

∣∣pS (si, ai, s) > 0
}

. Let L
(
sξ∞
)

= l0l1 . . . be the
sequence of labels associated with sξ∞ such that li ∈ L (si)
and pL (si, li) > 0. Denote by L

(
sξ∞
)
|= φ if the induced

trace sξ∞ satisfies φ. The probabilistic satisfaction under the
policy ξ from an initial state s0 can be defined as

Pr ξM (φ) = Pr ξM

(
L
(
sξ∞
)
|= φ|sξ∞ ∈ S

ξ
∞

)
, (1)

where Sξ∞ is a set of admissible paths from the initial state
s0 under the policy ξ.

Assumption 1. It is assumed that there exists at least one
policy such that the induced traces satisfy task φ with non-
zero probability.

Assumption 1 is a mild assumption and widely employed
in the literature (cf. [9], [15], [16]), which indicates that
the LTL task can be satisfied with nonzero probability.
Consequently, the following problem is considered.

Problem 1. Given an LTL-specified task φ and a PL-
MDP M with unknown transition probabilities (i.e., motion
uncertainties) and an unknown probabilistic labels (i.e.,
workspace uncertainties), the objective is to find the
desired policy ξ∗ that maximizes the satisfaction probability,
i.e., ξ∗ = arg max

ξ
Pr ξM (φ), by interacting with the

environment.
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Fig. 1: (a) PL-MDP model with the deterministic label
function. (b) LDGBA of LTL formula ϕe. (c) The standard
product MDP.

In order to find the desired policy in PL-MDP M to
satisfy the user-specified LTL formula φ, we can construct
the standard product MDP between M and the LDGBA
of φ as described in [1], [24]. Then, the problem becomes
finding the policy that satisfies the accepting condition of the
standard product MDP with maximum probability. However,
when considering deterministic policies, directly applying
LDGBA [24] may fail to satisfy the LTL specifications,
because there do not exist deterministic policies to select
several actions with the same optimal expected return at one
state. To illustrate this issue, Example 1 is provided.

Example 1. Here is an example to demonstrate why the
LDGBA does not work in some cases for deterministic
policies. Fig. 1 (a) shows a special case of the PL-MDP
model that deterministically labels each state, in which there
are three states s0, s1 and s2 associated with three labels r0,
r1, and r2, respectively. The initial state of PL-MDP is s0.
The LTL specification of the PL-MDP is ϕe = (@♦r1) ∧
(@♦r2), which requires the agent starting from s0 labeled
with r0 to repetitively visit the states with labels r1 and
r2. Fig. 1 (b) shows the corresponding LDGBA of ϕe with
two accepting sets F = {{q1} , {q2}}. Fig. 1 (c) illustrates
the resulted standard product MDP. By Def. 2, the policy
that satisfies ϕe should enforce the repetitive trajectories,
i.e., Cycles 1 and 2 in Fig. 1 (c). However, there exists no
deterministic policy that can periodically select two actions
aP01 and aP02 at state (s0, q0) (marked with a blue rectangle)
in Fig. 1 (c). As a result, applying the standard product
MDP cannot generate a pure deterministic optimal policy
to complete Task ϕe.

IV. AUTOMATON ANALYSIS

To solve Problem 1, Section IV-A first presents how the
LDGBA in Definition 2 can be extended to an E-LDGBA,
which keeps track of non-visited accepting sets and accepts
the same language as the LDGBA. Section IV-B presents
the construction of a EP-MDP between a PL-MDP and an
E-LDGBA, and the property of EP-MDP is also discussed.

A. E-LDGBA

Given an LDGBA A = (Q,Σ, δ, q0, F ), inspired by [17],
a tracking-frontier set T is designed to keep track of non-
visited accepting sets. Particularly, T is initialized as F ,
which is then updated based on

fV (q, T ) =

 T \ Fj , if q ∈ Fj and Fj ∈ T,
F \ Fj , if q ∈ Fj and T = ∅,
T, otherwise.

(2)

Once an accepting set Fj is visited, it will be removed from
T . If T becomes empty, it will be reset as F \Fj . Since the
acceptance condition of LDGBA requires to infinitely visit
all accepting sets, we call it one round if all accepting sets
have been visited (i.e., a round ends if T becomes empty).
If a state q belongs to multiple sets of T , all of these sets
should be removed from T . Based on (2), the E-LDGBA is
constructed as follows.

Definition 3 (Embedded LDGBA). Given an LDGBA A =
(Q,Σ, δ, q0, F ), its corresponding E-LDGBA is denoted by
A =

(
Q,Σ, δ, q0, F , fV , T

)
where T is initially set as

T = F ; Q = Q × 2Q is the set of augmented states
e.g., q = (q, T ); The finite alphabet Σ is the same as the
LDGBA; The transition δ : Q × (Σ ∪ {ε}) � 2Q is defined
as q′ = δ (q, σ) with σ ∈ (Σ ∪ {ε}), e.g., q = (q, T ) and
q′ = (q′, T ), and it satisfies two conditions: 1) q′ = δ (q, σ),
and 2) T is synchronously updated as T = fV (q′, T )
after transition q′ = δ (q, α); F =

{
F1, F2 . . . Ff

}
where

Fj =
{

(q, T ) ∈ Q
∣∣q ∈ Fj ∧ Fj ⊆ T}, j = 1, . . . f , is a set

of accepting states.

In Definition 3, we abuse the tuple structure since the
frontier set T is synchronously updated after each transition,
and each state of E-LDGBA is augmented with the tracking-
frontier set T at every time-step via one-hot encoding. The
accepting state is determined based on the current automaton
state. Such property is the innovation of E-LDGBA, which
encourages all accepting sets to be visited in each round. In
the following analysis, we will use Aφ and Aφ to denote
the E-LDGBA and LDGBA, respectively, corresponding to
an LTL formula φ. Algorithm 1 of [25] shows the procedure
of obtaining a valid run q over an E-LDBGA Aφ.

Given Aφ and Aφ for the same LTL formula, the E-
LDGBA Aφ keeps track of unvisited accepting sets of Aφ
by incorporating fV and T . The T will be reset when all the
accepting sets of Aφ have been visited. Let L(Aφ) ⊆ Σω and
L(Aφ) ⊆ Σω be the accepted language of the Aφ and Aφ
automaton, respectively, with the same alphabet Σ. Based on
[1], L(Aφ) ⊆ Σω is the set of all infinite words accepted by
Aφ that satisfy LTL formula φ.
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Lemma 1. For any LTL formula φ, we can construct
LDGBA Aφ = (Q,Σ, δ, q0, F ) and E-LDGBA Aφ =(
Q,Σ, δ, q0, F , fV , T

)
. Then it holds that

L(Aφ) = L(Aφ). (3)

Proof. We prove (3) by showing that L(Aφ) ⊇ L(Aφ) and
L(Aφ) ⊆ L(Aφ).

Case 1: L(Aφ) ⊇ L(Aφ): For any accepting language
ω = α0α1 . . . ∈ L(Aφ), there exists a corresponding run
r = q0α0q1α1 . . . of Aφ s.t.

inf (r) ∩ Fi 6= ∅,∀i ∈ {1, . . . f} . (4)

For the run r, we can construct a sequence r = q0α0q1α1 . . .
by add each state q with the set T , which is synchronously
updated via (2) after each transition. It can be verified that
such a run r is a valid run of Aφ based on Def. 3. According
to (4), since the tracking-frontier set T will be reset once
all accepting sets have been visited, it holds inf (r) ∩ Fi 6=
∅,∀i ∈ {1, . . . f} s.t. ω ∈ L(Aφ).

Case 2: L(Aφ) ⊆ L(Aφ): Similarly, for any accepting
language ω = α0α1 . . . ∈ L(Aφ), there exists a
corresponding run r = q0α0q1α1 . . . of Aφ s.t.

inf (r) ∩ Fi 6= ∅,∀i ∈ {1, . . . f} . (5)

For the run r, we can construct a sequence r = q0α0q1α1 . . .
by projecting each state q = (q, T ) into q. It can be simply
verified that such a run r is a valid run of Aφ based on Def.
3. According to (5), it holds inf (r)∩Fi 6= ∅,∀i ∈ {1, . . . f}
s.t. ω ∈ L(Aφ).

Lemma 3 indicates that both E-LDGBA and LDGBA
accept the same language. Consequently, E-LDGBA can also
be applied to verify the satisfaction of LTL specifications,
and incorporating E-LDGBA into RL based model checking
will not affect the convergence of optimality.

B. Embedded Product MDP

Definition 4. Given a PL-MDP M and an E-LDGBA Aφ,
the embedded product MDP (EP-MDP) is defined as P =
M×Aφ =

(
X,UP , pP , x0, F

P), where X = S × 2Π ×Q
is the set of labeled states, i.e., x = (s, l, q, T ) ∈ X
with l ∈ L (s) satisfying pL (s, l) > 0; UP = A ∪
{ε} is the set of actions, where the ε-transitions are only
allowed for transitions from QN to QD; x0 = (s0, l0, q0)

is the initial state; FP =
{
FP1 , F

P
2 . . . FPf

}
where FPj ={

(s, l, q) ∈ X
∣∣q ∈ Fj}, j = 1, . . . f , is the set of accepting

states; pP : X × UP × X � [0, 1] is transition probability
defined as: 1) pP

(
x, uP , x′

)
= pL (s′, l′) · pS (s, a, s′) if

δ (q, l) = q′ and uP = a ∈ A (s); 2) pP
(
x, uP , x′

)
= 1

if uP ∈ {ε}, q′ ∈ δ (q, ε), and (s′, l′) = (s, l); and
3) pP

(
x, uP , x′

)
= 0 otherwise. After completing each

transition q′ = δ (q, α) based on δ, T is synchronously
updated as (T ) = fV (q′, T ) by (2).

Let π denote a policy over P and denote by xπ∞ =
x0 . . . xixi+1 . . . the infinite path generated by π. A path
xπ∞ is accepted if inf (xπ∞) ∩ FPi 6= ∅ , ∀i ∈ {1, . . . f}.

The accepting run xπ∞ can yield a policy ξ in M that
satisfies φ. We denote Prπ [x |= Accp] as the probability of
satisfying the acceptance of P under policy π, and denote
Prmax [x |= Accp] = max

π
PrπM (Accp).Problem 1 can be

reformulated as follows.

Problem 2. Given a user-specified LTL task φ and
the PL-MDP with unknown transition probabilities (i.e.,
motion uncertainties) and unknown labeling probabilities
(i.e., environment uncertainties), the goal is to find a policy
π∗ satisfying the acceptance condition of P with a maximum
probability, i.e., Prπ

∗
[x |= Accp] = Prmax [x |= Accp].

Definition 5. Let MCπP denote the Markov chain induced
by a policy π on P , whose states can be represented by
a disjoint union of a transient class Tπ and nR closed
irreducible recurrent classes Rjπ , j ∈ {1, . . . , nR} [26].

Lemma 2. Given an EP-MDP P =M×Aφ , the recurrent
class Rjπ of MCπP , ∀j ∈ {1, . . . , n}, induced by π satisfies
one of the following conditions:

1) Rjπ ∩ FPi 6= ∅, ∀i ∈ {1, . . . f}, or
2) Rjπ ∩ FPi = ∅, ∀i ∈ {1, . . . f}.

The proof of lemma 2 can be found in [25]. Lemma 2
indicates that, for any policy, all accepting sets will be placed
either in the transient class or in one of the recurrent classes.

V. LEARNING-BASED CONTROL SYNTHESIS

In this section, we discuss a design of reward and discount
functions, and present rigorous analysis to show how such
a design can guide the RL agent for the optimal policy of
Problem 2.

A. Reward Design

Let FPU denote the union of accepting states, i.e.,
FPU =

{
x ∈ X

∣∣x ∈ FPi ,∀i ∈ {1, . . . f}}. Inspired by [16],
we propose a reward function and a discount function
respectively as:

R (x) =

{
1− rF , if x ∈ FPU ,

0, otherwise, (6)

γ (x) =

{
rF , if x ∈ FPU ,
γF , otherwise, (7)

where rF (γF ) is a function of γF satisfying
lim

γF �1−
rF (γF ) = 1 and lim

γF �1−

1−γF
1−rF (γF ) = 0. Given a

path xt = xtxt+1 . . . starting from xt, the return is denoted

by D (xt) :=
∞∑
i=0

(
i−1∏
j=0

γ (xt [t+ j]) ·R (xt [t+ i])

)
where

it holds
−1∏
j=0

:= 1, and xt [t+ i] denotes the (i+ 1)th state in

xt. Based on (V-A), the expected return of any state x ∈ X
under policy π can be defined as

Uπ (x) = Eπ [D (xt) |xt [t] = x|] . (8)

Since we apply the LDGBA with several accepting sets
which might result in more complicated situations, e.g.,
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several accepting sets, we can not obtain the same results
as in [16]. We then establish the following theorem which is
one of the main contributions.

Theorem 1. Given the EP-MDP P =M×Aφ, for any state
x ∈ X , the expected return under any policy π satisfies

∃i ∈ {1, . . . f} , lim
γF �1−

Uπ (x) = Pr π
[
♦FPi

]
, (9)

where Prπ
[
♦FPi

]
is the probability that the paths starting

from state x will eventually intersect any one FPi of FP .

More detailed proof of theorem 1 can be found in [25].
When the condition γF � 1− holds, [16] proves the
expected return as the probability of satisfying the accepting
condition of LDBA. Different from [16], Theorem 1 only
states that the expected return indicates the probability
of visiting one accepting set, rather than showing the
probability of satisfying the acceptance condition of E-
LDGBA. Nevertheless, we will show in the following section
how Theorem 1 and lemma 2 can be leveraged to solve
Problem 2.

Theorem 2. Consider a PL-MDPM and an E-LDGBA Aφ
corresponding to an LTL formula φ. Based on assumption 1,
there exists a discount factor γ and any optimization method
for (8) with γF > γ and rF > γ to to obtain a policy π̄ ,
then the induced run rπ̄P satisfies the accpeting condition of
the corresponding P (Def. 4).

Due to space limitation, the proof of theorem 2 can be
found in [25]. Theorem 2 proves that by selecting γF > γ
and rF > γ, optimizing the expected return in (8) can find
a policy satisfying the given task φ.

Theorem 3. Given a PL-MDP M and an E-LDGBA
Aφ, by selecting γF � 1−, the optimal policy π∗ that
maximizes the expected return (8) of the corresponding EP-
MDP also maximizes the probability of satisfying φ, i.e.,
Prπ

∗
[x |= AccP ] = Prmax [x |= AccP ].

Proof. Since γF � 1−, we have γF > γ and rF > γ

from Theorem 2. There exists an induced run rπ
∗

P satisfying
the accepting condition of P . According to Lemma 1,

lim
γF �1−

Uπ
∗

(x) is exactly equal to the probability of visiting

the accepting sets of an AMEC. Optimizing lim
γF �1−

Uπ
∗

(x) is

equal to optimizing the probability of entering AMECs.

B. Model-Free Reinforcement Learning

The learning strategy is outlined in Alg. 1. Based on the Q-
learning [8], the agent updates its Q-value for each transition
according to as line 15 in Alg. 1, and Q-value will converge
to a unique limit Q∗. Therefore, the optimal expected utility
and policy can be obtained as line 23-24 of Alg. 1.

VI. CASE STUDIES

The developed RL-based control synthesis is implemented
in Python. Owl [27] is used to convert LTL specifications
to LDGBA. We implement the Alg. 1 to validate the
effectiveness of our approach.

Algorithm 1 Reinforcement Learning

1: procedure INPUT: (M , φ, Λ)
Output: optimal policy π∗

Initialization: Set episode = 0 , iteration = 0 and τ (maximum
allowed learning steps)

2: set rF = 0.99 and γF = 0.9999 to determine R (x) and γ (x)
3: for all x ∈ X do
4: U (x) = 0 and Q

(
x, uP

)
= 0, ∀uP ∈ UP (x)

5: Count
(
x, uP

)
= 0, ∀uP ∈ UP (x)

6: end for
7: xcurr = x0;
8: while U are not converged do
9: episode+ +;

10: ε = 1/episode;
11: while iteration < τ do
12: iteration+ +
13: Select uPcurr based on epsilon-greedy selection
14: Execute uPcurr and observer xnext, R (xcurr),γ (xcurr)
15: r←R (xcurr) and γ←γ (xcurr)

16: Count
(
xcurr, u

P
curr

)
+ +

17: α = 1/Count
(
xcurr, u

P
curr

)
18: Q

(
xcurr, u

P
curr

)
← (1− α)Q

(
xcurr, u

P
curr

)
+

α

[
r + γ · max

uP∈UP
Q

(
xnext, u

P
)]

19: xcurr = xnext

20: end while
21: end while
22: for all x ∈ X do
23: U (x) = max

uR∈UR
Q

(
x, uP

)
24: π∗ (x) = arg max

uP∈UP
U (x)

25: end for
26: end procedure

Fig. 2: (a) The estimated maximal satisfaction probability.
(b) The optimal policy of satisfying ϕcase1.

A. Simulation Results

Consider a mobile robot following the unicycle model,
i.e. ẋ = v sin (θ), ẏ = v cos (θ), and θ̇ = ω, where x, y, θ
indicate the robot positions and orientation. The linear and
angular velocities are the control inputs, i.e., u = (v, ω). The
workspace is shown in Fig. 2 and Fig. 3. To model motion
uncertainties, we assume the action primitives can not always
be successfully executed. For instance, action primitives
“N,S,E,W ” mean the robot can successfully move towards
north, south, east and west (four possible orientations) to
adjacent cells with probability 0.9, respectively, and fails by
moving sideways with probability 0.1. Action primitive “R”
means the robot remains at its current cell.

(1) Maximum Satisfaction Probability: In this case, the

810

Authorized licensed use limited to: The University of Iowa. Downloaded on January 03,2022 at 04:17:59 UTC from IEEE Xplore.  Restrictions apply. 



objective is to verify that the generated policy satisfies the
LTL specification with a maximum probability. The package
Csrl in [16] is used. The LTL specification is ϕcase1 = ♦ @
t ∧ @¬u, which requires the robot to eventually arrive at
one of the targets t while avoiding unsafe areas u. Fig. 2
(a) shows the estimated maximum probability of satisfying
ϕcase1 starting from each state. Suppose the robot starts from
(0, 0), Fig. 2 (b) shows the generated optimal policy at each
state, and the robot will complete ϕcase1 with probability
one.

Fig. 3: Simulated trajectories of 25 time steps under the
corresponding optimal policies.

(2) Environment Uncertainties: As shown in Fig. 3, the
cells are marked with different colors to represent different
areas of interest, e.g., Base1, Base2, Base3, Obs, Sply,
where Obs and Sply are shorthands for obstacle and supply,
respectively. To model the environment uncertainties, the
number associated with a cell represents the likelihood that
the corresponding property appears at that cell. In Fig. 3 (a),
the desired surveillance task to be performed is formulated as
ϕcase2 = (@♦Base1) ∧ (@♦Base2) ∧ (@♦Base3) ∧ @¬Obs.

We then validate our approach with more complex task
specification as

ϕcase3 = ϕcase1 ∧ @ (Sply→, ((¬Sply) ∪ ϕone1)) ,

where ϕone1 = Base1 ∨ Base2 ∨ Base3. The generated
optimal trajectory is shown in Fig. 3 (a) and (b).

Fig. 4: The mean of rewards is obtained using E-LDGBA
(left) and LDBA (right) respectively.

(3) Reward Density: Since LDBA can be considered
as a special case of E-LDGBA with only one accepting

set, LDBA is compared with E-LDGBA in this case. To
show the benefits of applying E-LDGBA over LDBA in
overcoming the issues of spare rewards, we perform 100
learning iterations for 1000 episodes and compare the reward
collection in the training process. The RL-based policy
synthesis is carried out for ϕcase2. Fig. 4 shows the mean and
standard deviations of collected rewards using E-LDGBA
and LDBA, respectively. Hence, the sparse reward issue is
relaxed in our method.

(4) Scalability: To show the computational complexity, the
RL-based policy synthesis is also performed for ϕcase2 over
workspaces of various sizes (each grid is further partitioned).
The simulation results are listed in Table I of [25]. More
details about the analysis of (1) Maximum Satisfaction
Probability, (2) Environment Uncertainties, (3) Reward
Density, and (4) Scalability can be found in [25].

B. Experimental Results

Consider an office environment constructed in ROS
Gazebo as shown in Fig. 5, which consists of 7 rooms
denoted by S0, S2, S3, S5, S7, S9, Obs and 5 corridors
denoted by S1, S6, S8. The two black dash lines are the
dividing lines for corridors S1, S6 and S6, S8, separately.
Starting from room S0, the service to be performed by
TurtleBot3 is expressed as ϕcase4 = ϕall ∧ @¬Obs, where
ϕall = @♦S2∧@♦S3∧@♦S5∧@♦S9∧@♦S10. In ϕcase4, ϕall
requires the robot to always service all rooms (e.g. pick trash)
and return to S0 (e.g. release trash), while avoiding Obs. The
generated satisfying trajectories (without collision) marked
as gray bold dash line are shown in Fig. 5. To maximize the
satisfaction probability, it is observed that the optimal policy
avoids the corridor S6. More details about the experiment
can be found in [25].

Fig. 5: The mock-up office scenario with the TurtleBot3
robot.

VII. CONCLUSION

In this paper, the LTL specifications are translated to E-
LDGBA to apply the deterministic policy, and a model-free
learning-based algorithm is developed to synthesize control
policies that maximize the satisfaction of LTL specifications.
Future research will focus on deep RL to address continuous
state and action spaces.
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