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Abstract
Intelligent traffic lights in smart cities can optimally reduce traffic congestion. In this study, we employ reinforcement learning 
to train the control agent of a traffic light on a simulator of urban mobility. As a difference from existing works, a policy-based 
deep reinforcement learning method, Proximal Policy Optimization (PPO), is utilized rather than value-based methods such 
as Deep Q Network (DQN) and Double DQN (DDQN). First, the obtained optimal policy from PPO is compared to those 
from DQN and DDQN. It is found that the policy from PPO performs better than the others. Next, instead of fixed-interval 
traffic light phases, we adopt light phases with variable time intervals, which result in a better policy to pass the traffic flow. 
Then, the effects of environment and action disturbances are studied to demonstrate that the learning-based controller is 
robust. Finally, we consider unbalanced traffic flows and find that an intelligent traffic light can perform moderately well for 
the unbalanced traffic scenarios, although it learns the optimal policy from the balanced traffic scenarios only.

Keywords Traffic light control · Reinforcement learning · Policy

1 Introduction

As the foundation of our society, transportation systems help 
ensure that people can reach every destination. Furthermore, 
transportation promotes economic growth via increasing 
business productivity, enhancing accessibility of the labor 

force and jobs, and improving supply chain efficiency. How-
ever, traffic congestion has become more and more costly. 
According to data analyzed by INRIX [1], traffic congestion 
has cost each American 97 h and $1,348 per year. In addi-
tion to the waste of fuel, traffic congestion increases carbon 
emissions [2, 3], one of the most harmful effects on the envi-
ronment. Since traffic lights have been used to control traffic 
flow, one way to mitigate traffic congestion is by maximizing 
the traffic light performance with an optimal control strategy.

The earliest traditional traffic light control approach 
includes predefined fixed-time plans [4] in which formulas 
were derived to predict the average delay to vehicles with 
the consideration of fixed-cycle traffic lights. In another 
approach, Cools et al. [5] implemented self-organizing traf-
fic lights via actuated control in an advanced traffic simulator 
with real data. On the other hand, Zhou et al. [6] investigated 
adaptive traffic light control of multiple intersections using 
real-time traffic data. The results demonstrated that the adap-
tive control could produce lower average waiting time and 
fewer stops than the predefined fixed-time control and the 
actuated control. In addition, another adaptive traffic light 
control [7] was proposed for connected and automated vehi-
cles at isolated traffic intersections. This control approach 
not only reduces the average waiting time but also guar-
antees the worst-case waiting time. Furthermore, Demitrov 
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[8] developed a method to improve the level of traffic light 
service by optimizing the phase length and cycle.

Riding the wave of artificial intelligence (AI), deep 
learning (DL) and reinforcement learning (RL) have been 
employed in solving various engineering problems [9, 10]. 
As a subset of machine learning, RL [11] enhances the con-
trol agent to obtain an optimal action strategy, i.e., policy, 
during the interaction with the environment. There is a 
growth of interest in learning-based control of traffic lights 
[12, 13], i.e., intelligent traffic lights. Li et al. [14] proposed 
algorithms to design traffic signal timing plans by setting 
up a deep neural network (DNN) to learn the state-action 
value function (also called Q-function) of RL. In this deep 
Q-learning approach, the agent learned appropriate signal 
timing policies from the sampled traffic state, control inputs, 
and the corresponding traffic system performance output. 
Wei et al. [15] also employed deep Q-learning to train the 
traffic light control agent. They tested the method on a large-
scale real traffic dataset obtained from surveillance cameras.

In addition, multi-agent reinforcement learning (MARL) 
was employed to coordinate the traffic light controllers of 
multiple intersections. Wu et al. [16] proposed a novel algo-
rithm for traffic light control in vehicular networks. They 
considered both the vehicles and the pedestrians who waited 
to pass through the intersection. The experimental results 
showed that their method could run stably in various sce-
narios. Wang et al. [17] designed a graph neural network-
based model to represent interactions between multiple traf-
fic lights. Then, a deep Q-learning method was utilized to 
make operation decisions for each traffic light. Chen et al. 
[18] used a concept of "pressure" in RL so that the designed 
control agents could coordinate multiple traffic lights. They 
experimented on a real-world scenario with more than two 
thousand traffic lights in Manhattan, New York City.

In this study, we utilize a deep RL method to synthesize 
an optimal operation strategy of a traffic light to pass the 
traffic flow intelligently. The contributions are manifold, as 
described below. Most existing works employed value-based 
RL methods, such as deep Q-learning [15, 17, 18], to train 
the control agent. As a difference, we adopt a policy-based 
RL method, Proximal Policy Optimization (PPO), in this 
work and compare the results with the ones obtained from 
value-based RL methods. On the other hand, some previ-
ous works considered only two traffic light phases [14, 15] 
or four phases [16] at the intersection. Although only one 
traffic intersection is studied in this work, we investigate a 
complex traffic system, which allows left turns, right turns, 
and U-turns in each branch. Therefore, a total of eight traf-
fic light phases are considered. Furthermore, we consider a 
traffic light with variable-interval phases, and it performs 
better than those with fixed-interval phases that have been 
used in most previous studies [15, 19], mainly resulting in 
fewer stops. In addition, two traffic scenarios are studied 

to demonstrate the robustness of the intelligent traffic light 
trained via PPO: (1) environment disturbance because of 
car accidents and (2) action disturbance due to traffic light 
malfunction. According to our best knowledge, neither has 
been investigated in the literature. Finally, we find that an 
intelligent traffic light can operate moderately well under 
unbalanced traffic flows, although it only learns from the 
balanced traffic scenarios.

The paper is organized as follows. Section 2 introduces 
deep RL methods, including value-based and policy-based 
methods, for the control of traffic lights. Section 3 compares 
the optimal policies obtained from various RL methods. 
Then, the advantages of the traffic light phases with variable 
time intervals in passing the traffic flow are investigated. 
Section 3 also considers environment and action distur-
bances to demonstrate the robustness of the optimal policies. 
Finally, Section 4 provides conclusions and future works.

2  Methodology

2.1  Reinforcement Learning Problem of Traffic Light 
Control

When formulating an RL problem in this study, the control 
of a traffic light can be described by the traffic light as a con-
troller or a control agent interacting with the environment, 
i.e., a traffic intersection, as shown in Fig. 1. The learning 
process is iterative. At each iteration, the control agent 
observes the state of the traffic intersection and decides on 
an action—switching to a new traffic light phase or staying 
with the current phase. The traffic flow at the intersection 
will be correspondingly changed due to the decision-making 

Fig. 1  The interaction between the control agent and the traffic inter-
section in reinforcement learning
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of the control agent. When observing the next state of the 
traffic intersection, the control agent receives feedback, 
called a reward, and then decides on the following action.

In addition to an agent, key components in basic RL 
include an environment, states, actions, and a reward func-
tion. In this study, we consider a four-way traffic intersection 
where there are three 300-m-long lanes in each incoming or 
outgoing road. The outside lane is for right turns only, while 
the middle lane is for going straight, i.e., through movement. 
The inside lane allows both left turns and U-turns, as shown 
in Fig. 1. This traffic intersection is modeled and simulated 
via an open-source and highly portable traffic simulator 
called Simulation of Urban Mobility (SUMO) [20]. It is 
assumed that all vehicles are the same type with the infor-
mation in Table 1. The car length is defined as the distance 
from the front bumper to the rear bumper, while the min gap 
means the distance between the front car's rear bumper and 
the rear car's front bumper when stopping. SUMO randomly 
inputs the vehicles at the end of each incoming road, follow-
ing the traffic flow setting listed in Table 2, until reaching 
the desired number of vehicles, which is 808 in this study.

It is assumed that the environment is fully observable, 
so the control agent has complete knowledge of the traf-
fic status when observing the intersection. Such a so-called 
state is represented by vehicles' positions, velocities, waiting 
times, and the current traffic light phase. All information 

can be withdrawn from the SUMO simulator. Specifically, 
each road is discretized into many cells [21], and every cell 
has the same width as the lane width and the length as the 
summation of the car length and a min gap. If a car’s center 
is located in a cell, 1 is assigned to this cell. Otherwise, 0 is 
assigned to the cell. Consequently, all cells form a vehicle 
position matrix in which the number of rows equals the num-
ber of roads, and the number of columns is the number of 
cells on each road. Similarly, the vehicle velocity and wait-
ing-time matrices can be generated by assigning the vehicles' 
velocities and waiting times in the corresponding cells. In 

addition, the traffic light phase is encoded as a vector of 1's 
(green lights) and 0's (red lights). In summary, the state vari-
ables include the vehicle position, velocity, and waiting-time 
matrices, as well as the traffic light phase vector.

The agent can take eight actions to switch the current 
traffic light phase to one of the phases in Fig. 2. We first 
consider the traffic light phases with fixed time intervals. 
There is a 5-s transition if the agent chooses a traffic light 
phase different from the current one, and the chosen light 
phase will last 10 s. Otherwise, the current light phase will 
be extended five more seconds. It shall be noted that later 
in this study, we will consider the traffic light phases with 
variable time intervals.

The agent's objective is to find an optimal policy, �∗ , 
which can maximize the expected return for any state as

where U�(s) is the expected discounted return, i.e., the accu-
mulative reward, under policy � starting from state s over the 
long run and can be calculated as

where � ∈ [0, 1] is a discount factor, and R(s, a, s� ) is a reward 
function. The reward function defines the goal of an RL 

(1)�∗ = argmax� U� (s)

(2)U�(s) = �
�
[∑∞

i=0
� i ∙ R

(
si, ai, si+1

)|||s0 = s
]

Table 1  Vehicle data in Simulation of Urban Mobility (SUMO)

Length Min gap Max acceleration Max deceleration

3 m 2 m 1 m/s2 4.5 m/s2

Table 2  Traffic flow rates (vehicles per hour)

Right turn Through movement Left turn U-turn

480 600 240 120

Fig. 2  Traffic light phases
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problem, and it provides feedback to the agent about good or 
bad events after the agent takes action a at state s and reaches 
next state s′ . It shall be noted that a policy � = �(a|s) maps 
states to actions and provides a guideline for the agent to 
select actions. Since we consider a fully observable environ-
ment with the assumption of Markov property [11], action 
selection depends on the current state only, and the policy 
is memoryless.

In this study, the reward function is related to traffic 
light phase switching and traffic status at the interaction, as 
expressed below.

where Ra is the action reward. If the agent chooses a differ-
ent light phase, Ra = 5 ; otherwise, Ra = 0 . After the agent 
reaches the next state, the other reward components in Eq. 
(3) can be calculated based on the vehicle position, velocity, 
and waiting-time matrices. R1 is the total number of vehicles 
that are stopped on all four roads at the next state. A vehicle 
is considered as stopped if its velocity is below 0.1 m/s. R2 is 
the average waiting time (in seconds) of all stopped vehicles 
by the time of the next state. Once a vehicle starts to move, 
its waiting time is reset to zero.

The last reward component, R3 , in Eq. (3) is calculated as

where Nl is the total number of lanes at the traffic intersec-
tion, navg = R1∕Nl is the average number of stopped vehicles, 
and ni is the number of stopped vehicles at lane i . It shall 
be noted that Ra , R1 , and R2 are commonly used in existing 
works [22]. The other widely used reward components in 
studies of intelligent traffic lights include the total length 
of waiting vehicles and the number of vehicles that have 
passed the traffic light [15]. R3 is newly introduced in this 
study. Indeed, R1 globally quantifies the traffic congestion at 
the intersection while R3 represents how well the local traffic 
congestion is balanced in individual lanes. To the authors' 
knowledge, this paper is the first to introduce the balance 
of traffic congestion in the reward of training an intelligent 
traffic light.

2.2  Q‑learning and Value‑Based Methods

By maximizing the accumulated reward, the control agent 
will find the optimal policy to reduce the traffic congestion 
as much as possible. Using value-based RL methods, we can 
directly solve so-called optimal value functions (either state 
value or state-action value) rather than the optimal policies. 
Indeed, the expected return defined in Eq. (2) is the state 
value at state s . On the other hand, a state-action value, also 
called action value or Q value as Q(s, a) , is the total reward 

(3)R = Ra − R1 − 0.5R2 + 0.8R3

(4)R3 =
∑Nl

i=0
0.02

(
navg − ni

)
ni

that an agent can expect to accumulate over a long run, start-
ing from state s and taking action a . Once the optimal value 
function is found, the optimal policy can be determined via 
the greedy action selection.

Q-learning [23] is one of the value-based RL methods, 
and it is model-free because the transition function of state-
to-state is not required. This method evaluates all actions at 
each state to determine the best move via Monte Carlo simu-
lations. The naïve Q-learning method is a tabular method 
in which Q values at each state are stored in a so-called 
Q-table. This table can guide the agent to the best action 
with the highest Q value at each state. In each episode, the 
Q value at the current state s when taking action a is updated 
at every step as below based on the Bellman equation [11].

where maxa’ Q(s’, a’) outputs the highest Q value at the next 
state s’, � is the discount factor as defined in Eq. (2), and � 
is the learning rate.

A discount factor is a number between 0 and 1 so that the 
total reward remains bounded. It also implies how important 
future rewards are. In addition, a large learning rate � may 
have the Q values converge faster. However, the convergence 
sometimes may be unstable or reach a value function other 
than the optimal one. On the contrary, a small learning rate 
can make the converge procedure smoother and more stable 
but more slowly. In practice, a large learning rate is used 
at the beginning and then decreases with iterations; this is 
called an adaptive learning rate.

Given enough episodes in Q-learning, when the optimal 
state-action value function Q∗(s, a) is converged, the optimal 
policy �∗(a|s) can be determined by

Deep neural networks are always employed in RL, named 
deep reinforcement learning (DRL), to solve the problems in 
which the state space and/or the action space are enormously 
large, or infinite (i.e., continuous), such as the traffic state 
space in this study. Therefore, most existing works [14, 22, 
25] in learning-based traffic light control employed value-
based DRL methods, including Deep Q Network (DQN) 
[24] and Double Deep Q Network (DDQN) [25], which are 
extensions of Q-learning. Since the state space is continu-
ous, it is impossible to utilize the tabular approach to store 
and withdraw Q values. Unlike the naїve Q-learning that 
uses a Q-table, DQN and DDQN employ artificial neural 
networks, called Q-networks, to map states to Q values.

DQN has two Q-networks, an evaluation Q-network and 
a target Q-network, which have the same architecture, as 
shown in Fig. 3. The input features, including vehicle posi-
tion, velocity, and waiting-time matrices, are processed via a 

(5)
Qnew(s, a) = Q(s, a) + �[R

(
s, a, s

�)

+����a�Q
(
s
�

, a
�)
− Q(s, a)]

(6)�∗(a|s) = argmaxaQ
∗(s, a)
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convolutional neural network [26] with two layers. The first 
layer uses a kernel size of 4 by 4, a stride length of 2, and 16 
out channels. The second layer uses a kernel size of 2 by 2, 
a stride length of 1, and 32 out channels. The rectified linear 
unit (ReLU) [27] is used as the activation function. The out-
put matrix and the traffic light phase vector are then flattened 
and passed to a fully-connected neural network to predict Q 
values. The fully-connected neural network has four hidden 
layers with 512, 256, 128, and 64 neurons. Since there are 
eight traffic light phases the control agent can choose, the 
output layer has eight neurons to predict Q values for indi-
vidual actions. The ReLU activation function is also used 
in the fully-connected neural network except for the output 
layer, in which there is a linear activation function.

During the learning process, the evaluation Q-network is 
updated at each step by randomly selecting a batch of data 
samples. At the same time, the target Q-network holds fixed 
weights until copying from the evaluation Q-network once 
in a while (every 50 steps in this study). At each step, the 
evaluation Q-network predicts Q values at the current state 
s so that the agent can choose an action a at this state via the 
ε-greedy technique [11]. After reaching the next state s′ , the 
Q-networks are used to calculate the Q value when taking 
action a at state s via a revision of Eq. (5) as

where Qe represents the Q values predicted from the evalu-
ation Q-network, and Qt represents the Q values predicted 
from the target Q-network. Equation (7) generates one data 
sample, i.e., one experience, at each step. As an off-policy 
RL method, DQN also adopts experience replay memory 

(7)
Qnew(s, a) = Qe(s, a) + �[R

(
s, a, s

�)

+����a�Qt

(
s
�

, a
�)
− Qe(s, a)]

[28], which makes learning efficient. When applying DQN 
in this study, a batch of 32 experiences is randomly selected 
from the experience memory at each step to update the eval-
uation Q-network.

However, DQN sometimes overestimates Q values. Thus, 
DDQN [25] is proposed by modifying how to update Q val-
ues. Recall that DQN directly uses the maximum Q-value at 
the next state s′ from the target Q-network on the right-hand 
side of Eq. (7) to update the Q value of action a at the cur-
rent state s . As a difference, shown in Eq. (8), DDQN selects 
the action with the highest Q value at the next state s′ from 
the evaluation Q-network and then uses the Q value of the 
selected action at state s′ from the target Q-network to update 
the Q value of action a at state s.

2.3  Policy‑Based Methods

Unlike the value-based RL method, policy-based RL meth-
ods directly update and converge the optimal policy. Usu-
ally, they have good convergence properties and can learn 
stochastic policies, defined as ��(a|s) with a vector of policy 
parameters � , representing the probability of action a to be 
chosen at state s . A commonly used loss function in policy 
gradient methods [29] is empirically averaged over a finite 
batch of experiences

where Ât is an estimator of the advantage function at time 
t. Differentiating the objective function, i.e., the loss func-
tion, in Eq. (9) results in a gradient estimator [30, 31] dur-
ing the optimization procedure to update policy parameters. 
However, the advantage function estimate Ât is usually very 
noisy, leading to destructively large policy updates.

Schulman et al. [32] proposed a trust region policy opti-
mization (TRPO), in which a surrogate objective is maxi-
mized subject to a constraint on the limit of policy updates. 
Such an optimization problem is expressed as

where �old is the vector of policy parameters before the 
update, and KL represents Kullback–Leibler divergence to 
measure the relative difference between the current and the 
old policies at a given state st.

While keeping the benefits of TRPO, a new family of 
policy gradient methods, called Proximal Policy Optimiza-
tion (PPO) [33], revise the objective function in Eq. (10) 

(8)
Qnew(s, a) = Qe(s, a) + �[R

(
s, a, s

�)

+�Qt

(
s
�

, ������a�Qe

(
s
�

, a
�))

− Qe(s, a)]

(9)L(�) = �t

[
log��

(
at|st

)
Ât

]

(10)
max��t

[
��(at|st)
��old (at|st)

Ât

]

s.t.�t

[
KL

(
��old

(
∙|st

)
,��

(
∙|st

))]
≤ �

Fig. 3  The architecture of Q-networks



 International Journal of Intelligent Transportation Systems Research

1 3

as unconstrained optimization problems so that they are 
easy to implement and have a good sample complexity. One 
approach uses a penalty on the KL divergence with the adap-
tive penalty coefficient to achieve a target value of the KL 
divergence. In this study, we adopt another approach, devel-
oping a clipped surrogate objective, which performs better 
than the objective function with KL penalty.

Let rt(�) = ��∕��old denote the probability ratio of the cur-
rent policy and the old policy. The clipped surrogate objec-
tive in PPO can be written as

where clip
(
rt(�), 1 − �, 1 + �

)
 removes the incentive for 

moving rt outside of the interval [1 − �, 1 + �] , i.e., clipping 
the probability ratio to modify the surrogate objective. Such 
a way results in a lower bound on the original surrogate 
objective and guarantees the objective improvement. We use 
�=0.15 as the clipping range in this study.

This method is an on-policy learning method and uses 
every collected experience only once. Consequently, deep 
neural networks are updated once enough data samples are 
collected, and all old experiences will be discarded after 
updating. The network updating procedure can be described 
as follows. At each step, the current state is the input into 
the actor-new network to predict the probabilities of actions 
with which the agent can select the move. After taking the 
selected action, the agent reaches the next state and receives 
a reward. The current state, action, and reward are stored as 
one experience. This process is iterated for a certain number 
of steps until enough experiences have been collected. This 
study uses a batch size of 100 to train and update the actor-
new and critic networks. The actor-old network is a copy of 
the actor-new network before updating, and it represents the 
old policy in the probability ratio function rt(�) . During the 
updating of the actor-new network, the actor-old network 
always remains the same.

3  Simulations and Discussions

In this study, Monte Carlo simulations with up to 600 epi-
sodes are conducted to train the control agent of traffic lights 
via RL. Each episode terminates when all vehicles pass the 
traffic interaction. All simulations are performed on a High-
Performance Computing (HPC) cluster that is equipped with 
a GPU of 2080ti and a CPU with a frequency of 2.1 GHz. 
We first compare the performances of control agents trained 
via three RL methods–DQN, DDQN, and PPO–to show that 
PPO is better than the other two methods. Then, the traffic 
light phases with variable time intervals are implemented, 
and the induced optimal policy is assessed. Furthermore, 

(11)
LC(�) = �t[min(rt(�)Ât,

clip
(
rt(�), 1 − �, 1 + �

)
Ât)]

environment and action disturbances are studied to inves-
tigate the robustness of learning-based traffic lights. The 
above studies mainly consider balanced traffic flows that cor-
respond to the SUMO setting described in Table 2. Finally, 
we investigate the scenarios of unbalanced traffic flows. 
Some simulation videos are provided1 to demonstrate the 
operations of intelligent traffic lights under induced optimal 
policies.

3.1  Intelligent Traffic Lights Trained via Different 
DRL Methods

Solving an RL problem aims to achieve an optimal policy, 
maximizing the accumulated reward over the long run. To 
compare the training performances of DQN, DDQN, and 
PPO, the collected reward as a function of episodes is illus-
trated in Fig. 4. The reward evolution represents the con-
vergence of the training process. Once the training is con-
verged, the accumulated reward can be one of the metrics 
to assess the performances of various RL methods if the 
problem setting remains the same. A higher reward means 
that the induced policy is better. According to Fig. 4, DQN 
and DDQN have similar rewards after convergence, and PPO 
results in a higher reward than the others. In other words, 
PPO is better than DQN and DDQN at training intelligent 
control agents in this study.

To assess the optimal policies obtained from three dif-
ferent DRL methods, we conduct ten simulations under 
each policy, respectively, to average the accumulated 
reward, the time with which all vehicles pass the traffic 
intersection, and the vehicles' total waiting time. The set-
ting of the SUMO environment remains the same as the 

Fig. 4  Reward evolution during the training via DQN, DDQN, and 
PPO

1 https:// github. com/ YueZh u95/ Intel ligent- Traff ic- Light- via- Reinf 
orcem ent- Learn ing

https://github.com/YueZhu95/Intelligent-Traffic-Light-via-Reinforcement-Learning
https://github.com/YueZhu95/Intelligent-Traffic-Light-via-Reinforcement-Learning
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one used in learning. Additionally, we also collect the 
vehicles' passing time and waiting time from a predefined 
traffic light as a baseline. The predefined traffic light is 
set to repeatedly loop the traffic light phase from the first 
phase to the last one, as defined in Fig. 2. The comparison 
is shown in Table 3.

It can be seen that the policies induced from DQN and 
DDQN result in almost the same reward, being consistent 
with the observation from Fig. 4. Also, when the intelli-
gent traffic light operates under either the DQN- or DDQN-
induced policies, it takes about 1,250 s to pass all vehicles, 
i.e., a 30% time reduction compared to the predefined traffic 
light. Considering the total of the vehicles' waiting time, 
the DQN- and DDQN-induced policies result in 41% and 
43% less time, respectively, than the predefined traffic light 
control strategy. In addition, the same conclusion that the 
PPO-induced policy is better than the others can be with-
drawn from Table 3 as the one from Fig. 4. Therefore, under 
the PPO-induced policy, the intelligent traffic light can be 
more efficient at reducing traffic congestion than those under 
the DQN- and DDQN-induced policies. Specifically, the 
vehicles' passing time is reduced by 34%, and the vehicles' 
total waiting time is reduced by 55%, compared to the times 
resulting from the predefined traffic light.

Furthermore, it is worth comparing the training speed of 
RL by DQN, DDQN, and PPO on the same HPC cluster. The 
wall-clock times are recorded when finishing 600 episodes 
for each method. It takes DQN, DDQN, and PPO 6.5, 7.75, 
and 3.5 h, respectively, to retrieve the optimal policies. PPO 
is faster than DQN and DDQN because it doesn't update 
deep neural networks at each step like DQN and DDQN do. 
Indeed, as an on-policy learning method, PPO updates the 
actor and critic networks after a certain number of steps once 
enough experiences have been collected. Afterward, all the 
old experiences are discarded. In contrast, DQN and DDQN, 
which are off-policy learning methods, utilize the technique 
of experience replay to update Q-networks at each step.

In summary, learning-based intelligent traffic lights per-
form better than traffic lights with a predefined fixed-time 
plan. After comparing three RL methods, PPO, a policy-
based method, is more efficient and effective than DQN and 
DDQN, which are value-based methods in training intel-
ligent traffic lights.

3.2  Traffic Light Phases with Variable Intervals

The above study only considers the traffic light phases with 
fixed-time intervals, as in most existing works [22]. Specifi-
cally, during the training, a selected traffic light phase stays 
for a constant interval of 10 s if it is different from the last 
phase. Although the current traffic light phase has a prob-
ability of being chosen and extended for another 5 s, there 
is not much flexibility in selecting various time intervals for 
the same traffic light phase.

Here we consider traffic light phases with variable time 
intervals, including 10, 15, 20, and 25 s for a chosen phase. 
Consequently, the agent needs to choose both a traffic light 
phase and an interval for the phase to stay during the action 
selection at each step. Therefore, instead of 8 available 
actions, as illustrated in Fig. 2, there are 32 available actions 
in this study, i.e., 32 combinations of traffic light phases and 
intervals.

Only the PPO method is used in this study because it has 
been shown to perform better than DQN and DDQN, and it 
needs less wall-clock time to converge. The actor and critic 
neural networks keep the same architectures as in Fig. 3, 
except that the output layer of the actor-network has 32 neu-
rons instead of 8. Other parameters in training traffic lights 
via RL are the same as provided above. Figure 5 illustrates 
the reward evolution during the training via PPO when con-
sidering variable time intervals, compared to the one with 
fixed time intervals. It can be seen that considering traffic 
light phases with variable intervals results in a higher reward 
once converged. That means a better policy is achieved.

To quantitatively assess the induced policy when con-
sidering the traffic light phases with variable intervals, we 
conduct ten simulations under the obtained optimal policy 
and average the time to pass all vehicles and the vehicles' 
waiting time. The vehicles' passing time and total waiting 
time are 1,076 s and 55,028 s, respectively. Compared to 

Table 3  Assessment data of the predefined traffic light and the learn-
ing-based traffic lights via DQN, DDQN, and PPO

Method Reward Passing time Waiting time

Predefined N/A 1,800 s 132,713 s
DQN -15,215 1,252 s 77,570 s
DDQN -15,211 1,246 s 76,026 s
PPO -14,570 1,181 s 59,677 s

Fig. 5  Reward evolution when considering variable time intervals, 
compared to the one with fixed time intervals
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the data resulting from the traffic light phases with fixed 
time intervals (the control agent was trained via PPO in Sec-
tion 2.1, shown in Table 3, the time reductions are 9% in the 
passing time and 8% in the total waiting time. We also calcu-
late the average number of times the traffic light phases have 
been switched, i.e., the number of traffic light stops, under 
each optimal policy. We find that the number is dramati-
cally reduced from 137 to 63 when considering variable time 
intervals. Although there are no significant improvements in 
the passing time and waiting time, a much smaller number 
of action choosing results in a notably higher reward, as 
shown in Fig. 5.

3.3  Environment and Action Disturbances

This study considers environment and action disturbances to 
demonstrate that learning-based intelligent traffic lights are 
robust. Two policies, named A and B, from previous PPO 
training are adopted. The difference is that Policy A is for 
the traffic light phases with variable time intervals, while 
policy B is for the light phases with fixed time intervals.

The environment disturbance may be caused by a traf-
fic collision/car crash or car breakdown. We assume each 
vehicle has a 0.2% probability of crash or breakdown in this 
study. Random number generations can introduce such an 
environment uncertainty in the SUMO simulator. During 
the simulation, the car crash or breakdown can occur ran-
domly in any lane of either incoming or outgoing roads at 
an unexpected time. Once a car crash or breakdown occurs, 
the involved vehicle(s) will stay at the current position(s) 
for 300 s. At the same time, the vehicles behind them must 
change lanes to proceed. Consequently, traffic congestion 
increases because of such an environment disturbance. In 
addition, it is assumed that the vehicles involved in the crash 
or breakdown will be removed after 300 s and have no fur-
ther impact on the traffic flow.

As utilized above, ten simulations with collisions 
occurring on the incoming roads or the outgoing road are 
conducted to assess policies A and B, respectively. The 
results are compared to those from predefined traffic lights, 
as listed in Table 4. We separate the collision occurrence 

on the incoming and outgoing roads into two scenarios 
because collisions on the incoming roads have a higher 
impact on the traffic flow than collisions on the outgoing 
roads.

Table 4 shows that learning-based traffic lights perform 
much better than predefined traffic lights, just as concluded 
from the above studies. Traffic lights under Policies A and 
B perform similarly with respect to the vehicles' passing 
time. In addition, Policy A is slightly better than Policy B 
at reducing the vehicles' total waiting time. It should be 
noted that the number of traffic light stops under Policy A is 
much smaller than the one under Policy B because variable-
interval light phases are utilized in Policy A. An interesting 
phenomenon we observe in this study is that we retrain the 
traffic light by implementing the environment disturbances 
in training, but the new policy performs worse than Policies 
A and B, although it is better than the predefined traffic light 
control strategy.

Action disturbances, i.e., action uncertainties, can occur 
due to the malfunction of the traffic light. In this study, after 
the control agent selects a light phase to switch or stay, the 
traffic light has a 90% probability of switching to the desired 
light phase and another 10% probability of randomly switch-
ing to one of the other phases. Consequently, the optimal 
operation policy cannot be exactly followed. Introducing 
such action disturbance will also deteriorate traffic conges-
tion. It shall be noted that the environment is fully observ-
able and the control agent can observe the actual traffic light 
status. Therefore, the current traffic light phase vector, one 
of the state variables to determine the next action, is based 
on the actual traffic light phase instead of the one previously 
determined by the agent.

In addition to Policies A and B, a new policy (Policy C) 
is obtained via PPO, implementing an action disturbance 
in the SUMO simulator for training. Unlike Policies A and 
B, which are learned from a perfect traffic environment 
without action disturbances, Policy C is learned from the 
traffic environment considering a probability of traffic light 
malfunction (i.e., a 10% probability in this study). In addi-
tion, Policies A and C are for traffic lights with variable-
time-interval phases, while Policy B is for the light with 
fixed-time-interval phases. The performances of all three 
policies are evaluated in the traffic environment in which 
the action disturbances are implemented. The assessment 
data of the three policies, compared to the predefined traffic 
light, are listed in Table 5. Again, the learning-based traffic 
lights under Policies A, B, and C perform much better than 
the predefined traffic light, considering action disturbances 
due to traffic light malfunctions. Policy A is slightly better 
than Policy B; however, Policy A results in fewer light stops 
than Policy B. Although it considers action disturbance in 
training, the induced policy (Policy C) doesn't operate the 
traffic light better than Policies A and B. However, Policy C 

Table 4  Assessment data when collisions occur as environment dis-
turbances

Methods Collision occurrence Passing time Waiting time

Predefined Incoming road 1,820 s 135,117 s
Policy A Incoming road 1,271 s 69,884 s
Policy B Incoming road 1,260 s 70,233 s
Predefined Outgoing road 1,800 s 132,750 s
Policy A Outgoing road 1,190 s 64,965 s
Policy B Outgoing road 1,192 s 66,979 s
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may be useful in practice because it is from online training, 
while Policies A and B are induced from offline training.

In addition, we investigate the traffic light performances 
under the predefined plan, Policy A, and Policy B under 
various probabilities of action disturbances, i.e., consider-
ing different traffic light malfunction probabilities, from 5 
to 35% at 5% intervals. We conduct 50 simulations for every 
policy at each light malfunction probability and plot the 
averaged vehicle passing times in Fig. 6. It can be seen that 
Policy A results in similar passing times with a traffic light 
malfunction probability up to 35%, while the vehicle pass-
ing times under Policy B and the predefined plan gradually 
increase as the light malfunction gets worse. However, traf-
fic lights under Policies A and B perform much better than 
the predefined traffic light, as concluded above. It should 
be noted that based on our observation, when the light mal-
function probability becomes larger than 35%, the vehicle 
passing time under Policy A is notably increased as well.

3.4  Unbalanced Traffic Flow

In the above studies, only balanced traffic flows are con-
sidered. In other words, each incoming road has the same 
traffic flow rates as indicated in Table 2. In addition, Policy 
A was learned from such a perfect traffic environment with 

balanced traffic flows. This study considers a complex traffic 
environment that includes balanced and unbalanced traffic 
flows. A new policy, Policy D, is learned from this complex 
traffic environment, in which the SUMO simulator inputs 
vehicles for 1,500 s in three stages. During the first 500 s, 
the same balanced flow rates as in Table 2 are adopted. Then, 
the flow rates on the incoming east road are reduced by 
three-fourths for another 500 s while the flow rates remain 
the same on other incoming roads. Finally, during the third 
500 s, the flow rates on the incoming east road are back 
to normal, while the other incoming roads' flow rates are 
reduced by three-fourths.

To evaluate the performances of Policies A and D, both 
are applied to the same complex traffic environment as 
described above. For comparison, we also utilize the pre-
defined traffic light indicated in Section 3.1. The averaged 
vehicle passing times and waiting times are compared in 
Table 6. Although Policy A is obtained from the learning 
with balanced traffic flows, the traffic lights under this policy 
perform moderately well, compared to those under Policy 
D, which is particularly learned from complex traffic flows 
consisting of balanced and unbalanced traffic. Specifically, 
the vehicle passing time and waiting time from Policy D 
are only 8.3% and 9.4%, respectively, which are better than 
Policy A's. It is acceptable that policies learned from bal-
anced traffic flows can also handle unbalanced traffic flows. 
However, when considering extremely unbalanced traffic 
flows, our other simulations2 indicate that it would be better 
to learn the optimal policy directly from these scenarios.

4  Conclusions and Future Works

In this research, an intelligent traffic light learns to operate 
properly at a traffic intersection via RL. After comparing 
the performance of three DRL methods, DQN, DDQN, and 
PPO, and assessing their induced policies, PPO as a policy-
based DRL method is better than value-based DRL methods 
such as DQN and DDQN. We consider various time intervals 

Table 5  Assessment data when action disturbances occur due to traf-
fic light malfunction

Methods Passing time Waiting time # of 
phase 
switches

Predefined 1,942 s 139,863 s 129
Policy A 1,187 s 58,389 s 65
Policy B 1,240 s 60,932 s 132
Policy C 1,348 s 76,640 s 130

Fig. 6  Vehicle passing times considering various probabilities of traf-
fic light malfunction

Table 6  Assessment data of traffic lights under the predefined plan, 
Policy A, and Policy D in complex traffic flows consisting of bal-
anced and unbalanced traffic

Methods Passing time Waiting time

Predefined 4,320 s 452,401 s
Policy A 3,041 s 233,483 s
Policy D 2,790 s 211,528 s

2 github.com/YueZhu95/Intelligent-Traffic-Light-via-Reinforcement-
Learning.
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from which the control agent can choose for any light phase. 
Compared to the fixed-interval traffic lights that most existing 
works assumed, the traffic light with variable-interval phases 
generally can result in shorter passing times, shorter vehicle 
waiting times, and a much smaller number of phase switches. 
We also study the scenarios in which there are environment 
disturbances due to collisions or action disturbances because 
of traffic light malfunction. Our simulations demonstrated that 
the optimal policies via offline training without disturbances 
were robust and performed well in those scenarios.

This paper focuses on learning-based traffic light control at a 
single traffic intersection. Multiple traffic lights will be studied 
in the future, and multi-agent reinforcement learning (MARL) 
needs to be adopted. It should be noted that a limited number 
of intervals are considered in this study so that the action space 
is still discrete. This work can be extended to constructing a 
continuous action space in which intervals within a time range 
are available. Consequently, some other policy-based methods, 
including Asynchronous Advantage Actor Critic (A3C) and 
Deep Deterministic Policy Gradient (DDPG) could be applied. 
In addition, both vehicles and pedestrians could be considered 
in a future work to design learning-based traffic lights.
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