
0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3138704, IEEE
Transactions on Automatic Control

1

Optimal Probabilistic Motion Planning with
Potential Infeasible LTL Constraints

Mingyu Cai1,2, Shaoping Xiao2, Zhijun Li3, and Zhen Kan3

Abstract—This paper studies optimal motion planning subject
to motion and environment uncertainties. By modeling the system
as a probabilistic labeled Markov decision process (PL-MDP), the
control objective is to synthesize a finite-memory policy, under
which the agent satisfies complex high-level tasks expressed as
linear temporal logic (LTL) with desired satisfaction probability.
In particular, the cost optimization of the trajectory that satisfies
infinite horizon tasks is considered, and the trade-off between
reducing the expected mean cost and maximizing the probability
of task satisfaction is analyzed. Instead of using traditional Rabin
automata, the LTL formulas are converted to limit-deterministic
Büchi automata (LDBA) with a reachability acceptance condition
and a compact graph structure. The novelty of this work lies in
considering the cases where LTL specifications can be potentially
infeasible and developing a relaxed product MDP between PL-
MDP and LDBA. The relaxed product MDP allows the agent
to revise its motion plan whenever the task is not fully feasible
and quantify the revised plan’s violation measurement. A multi-
objective optimization problem is then formulated to jointly
consider the probability of task satisfaction, the violation with
respect to original task constraints, and the implementation cost
of the policy execution. The formulated problem can be solved
via coupled linear programs. To the best of our knowledge, this
work first bridges the gap between probabilistic planning revision
of potential infeasible LTL specifications and optimal control
synthesis of both plan prefix and plan suffix of the trajectory
over the infinite horizons. Experimental results are provided to
demonstrate the effectiveness of the proposed framework.

Index Terms—Formal Methods in Robotics and Automation,
Probabilistic Model Checking, Network Flow, Decision Making,
Linear Programming, Motion Planning, Optimal Control

I. INTRODUCTION

Autonomous agents operating in complex environments are
often subject to a variety of uncertainties. Typical uncertainties
arise from the stochastic behaviors of the motion (e.g.,
potential sensing noise or actuation failures) and uncertain
environment properties (e.g., mobile obstacles or time-varying
areas of interest). In addition to motion and environment
uncertainties, another layer of complexity in robotic motion
planning is the feasibility of desired behaviors. For instance,
areas of interest to be visited can be found to be prohibitive to
the agent in practice (e.g., surrounded by water that the ground
robot cannot traverse), resulting in that the user-specified
tasks cannot be fully realized. Motivated by these challenges,
this work considers motion planning of a mobile agent with

This work was supported in part by the National Natural Science Foundation
of China under Grant 62173314, Grant U2013601, and Grant 61625303.

1Department of Mechanical Engineering, Lehigh University, Bethlehem,
PA, 18015, USA. 2Department of Mechanical Engineering, University of Iowa
Technology Institute, The University of Iowa, Iowa City, IA, 52246, USA.
3Department of Automation, University of Science and Technology of China,
Hefei, Anhui, 230026, China.

potentially infeasible task specifications subject to motion and
environment uncertainties, i.e., motion planning and decision
making of stochastic systems.

Linear temporal logic (LTL) is a formal language capable
of describing complex missions [1]. For example, motion
planning with LTL task specifications has generated substantial
interest in robotics (cf. [2]–[4], to name a few). Recently,
there has been growing attention in the control synthesis
community to address Markov decision process (MDP) with
LTL specifications based on probabilistic model checking,
such as co-safe LTL tasks [5], [6], computation tree
logic tasks [7], stochastic signal temporal logic tasks
[8], and reinforcement-learning-based approaches [9]–[13].
However, these aforementioned works only considered feasible
specifications that can be fully executed. Thus, a challenging
problem is how missions can be successfully managed in a
dynamic and uncertain environment where the desired tasks
are only partially feasible.

This work studies the control synthesis of a mobile
agent with LTL specifications that can be infeasible. The
uncertainties in both robot motion (e.g., potential actuation
failures) and workspace properties (e.g., obstacles or areas
of interest) are considered. It gives rise to the probabilistic
labeled Markov decision process (PL-MDP). Our objective
is to generate control policies in decreasing priority order to
(1) accomplish the pre-specified task with desired probability;
(2) fulfill the pre-specified task as much as possible if
it is not entirely feasible; and (3) minimize the expected
implementation cost of the trajectory. Although the above
objectives have been studied individually in the literature, this
work considers them together in a probabilistic manner.

Related works: From the aspect of optimization, the
satisfaction of the general form of LTL tasks in stochastic
systems involves the lasso-type policies comprised of a
plan prefix and a plan suffix [1]. When considering cost
optimization subject to LTL specifications with infinite
horizons over MDP models, the planned policies generally
have a decision-making structure consisting of plan prefix
and plan suffix. The prefix policies drive the system into
an accepting maximum end component (AMEC), and the
suffix policies involve the behaviors within the AMEC [1].
Optimal policies of prefix and suffix structures have been
investigated in the literature [14]–[19]. A sub-optimal solution
was developed in [14], and minimizing the bottleneck cost
was considered in [15]. The works of [16]–[19] optimized
the total cost of plan prefix and suffix while maximizing the
satisfaction probability of specific LTL tasks. However, the
aforementioned works [14]–[19] mainly focused on motion

Authorized licensed use limited to: The University of Iowa. Downloaded on January 01,2022 at 06:41:17 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3138704, IEEE
Transactions on Automatic Control

2

planning in feasible cases and relied on a critical assumption
of the existence of AMECs or an accepting run under a policy
in the product MDP. Such an assumption may not be valid
if desired tasks can not be fully completed in the operating
environment.

When considering infeasible tasks, motion planning in
a potential conflict situation has been partially investigated
via control synthesis under soft LTL constraints [20] and
the minimal revision of motion plans [21]–[23]. Recent
works [24]–[26] extend the above approaches by considering
dynamic or time-bounded temporal logic constraints. The
works of [27] and [28] leverage sampling-based methods for
traffic environments. However, only deterministic transition
systems were considered in [20]–[28]. On the other hand,
when considering probabilistic systems, a learning-based
approach was utilized in the works of [29] and [30]. However,
these works do not provide formal guarantees for multi-
objective problems. The iterative temporal planning was
developed in [31] and [32] with partial satisfaction guarantees,
and the work [33] proposed a minimum violation control for
finite stochastic games subject to co-safe LTL. These results
are limited to finite horizons. In contrast, the satisfaction of
the general LTL tasks in stochastic systems involves the lasso-
type policies comprised of prefix and suffix structures [1].
This work considers decision-making over infinite horizons
in a stochastic system where desired tasks might not be
fully feasible. In addition, this work also studies probabilistic
cost optimization of the agent trajectory, which receives little
attention in the works of [20]–[31].

From the perspective of automaton structures, limit-
deterministic Büchi automata (LDBA) are often used instead
of traditional deterministic Rabin automata (DRA) [1] to
reduce the automaton size. It is well-known that the Rabin
automata, in the worst case, are doubly exponential in
the size of the LTL formula, while LDBA only has an
exponential-sized automaton [34]. In addition, the Büchi
accepting condition of LDBA, unlike the Rabin accepting
condition, does not apply rejecting transitions. It allows us
to constructively convert the problem of satisfying the LTL
formula to an almost-sure reachability problem [35]–[37]. As
a result, LDBA based control synthesis has been increasingly
used for motion planning with LTL constraints [35]–[37].
However, in the aforementioned works, cost optimization was
not considered, and most of them only considered feasible
cases (i.e., with goals to reach AMECs). In this work,
the product MDP with LDBA is extended to the relaxed
product MDP, which facilitates the optimization process to
handle infeasible LTL specifications, reduces the automaton
complexity, and improves the computational efficiency,

Contributions: Our work for the first time bridges the
gap between planning revision for potentially infeasible task
specifications and optimal control synthesis of stochastic
systems subject to motion and environment uncertainties. In
addition, we analyze the finite-memory policy of the PL-
MDP that satisfies complex LTL specifications with desired
probability and consider cost optimization in both plan prefix
and plan suffix of the agent trajectory over infinite horizons.
The novelty of this work is the development of a relaxed

TABLE I
ABBREVIATION SUMMARY OF NOTATIONS.

Notation Name Abbreviation
Limit-Deterministic Büchi Automaton LDBA

Strong Connected Component SCC
Bottom Strong Connect Component BSCC

Accepting Bottom Strong Connect Component ABSCC
Maximum End Component MEC

Accepting Maximum End Component AMEC
Average Execution Cost per Stage AEPS
Average Violation Cost per Stage AVPS

Average Regulation Cost per Stage ARPS
Linear Programming LP

product MDP between PL-MDP and LDBA to address the
cases in which LTL specifications can be potentially infeasible.
The relaxed product MDP allows the agent to revise its motion
plan whenever the task is not fully feasible and quantify the
revised plan’s violation measurement. In addition, the relaxed
product structure is verified to be an MDP model and a more
connected directed graph. Based on such a relaxed product
MDP, we are able to formulate a constrained multi-objective
optimization process to jointly consider the desired lower-
bounded satisfaction probability of the task, the minimum
violation cost, and the optimal implementation costs. We
can find solutions by adopting coupled linear programming
(LP) for MDPs relying on the network flow theory [18],
[19], which is flexible for any optimal probabilistic model
checking problems. We provide a comprehensive comparison
with the significant existing methods, i.e., Round-Robin policy
[1], PRISM [38], and multi-objective optimization frameworks
[17]–[19]. Although the relaxed product MDP is designed
to handle potentially infeasible LTL specifications, it is
worth pointing out it is also applicable to feasible cases
and thus generalizes most existing works. In addition, this
framework can be easily adapted to formulate a hierarchical
architecture that combines noisy low-level controllers and
practical approaches of stochastic abstraction.

II. PRELIMINARIES

A. Notations

N represents the set of natural numbers. For an infinite
path s = s0s1 . . . starting from state s0, s[0] denotes its first
element, s[t], t ∈ N denotes the path at step t, s[t :] denotes
the path starting from step t to the end. The expected value of
a variable x is E(x). We use abbreviations for several notations
and definitions, which are summarized in Table I.

B. Probabilistic Labeled MDP

Definition 1. A probabilistic labeled finite MDP (PL-MDP) is
a tupleM = (S,A, pS , (s0, l0) , L, pL, cA), where S is a finite
state space, A is a finite action space (with a slight abuse of
notation, A (s) also denotes the set of actions enabled at s ∈
S), pS : S×A×S � [0, 1] is the transition probability function,
π is a set of atomic propositions, and L : S � 2π is a labeling
function. The pair (s0, l0) denotes an initial state s0 ∈ S and

Authorized licensed use limited to: The University of Iowa. Downloaded on January 01,2022 at 06:41:17 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3138704, IEEE
Transactions on Automatic Control

3

an initial label l0 ∈ L (s0). The function pL (s, l) denotes
the probability of l ⊆ L (s) associated with s ∈ S satisfying∑
l∈L(s) pL (s, l) = 1,∀s ∈ S. The cost function cA (s, a)

indicates the cost of performing a ∈ A (s) at s. The transition
probability pS captures the motion uncertainties of the agent,
while the labeling probability pL captures the environment
uncertainties.

The PL-MDPM evolves by taking actions ai selected based
on the policy at each step i ∈ N0, where N0 = N ∪ {0}.

Definition 2. The control policy µ = µ0µ1 . . . is a sequence
of decision rules, which yields a path s = s0s1s2 . . . overM.
As shown in [39], µ is called a stationary policy if µi = µ
for all i ≥ 0, where µ can be either deterministic such that
µ : S → A or stochastic such that µ : S × A → [0, 1]. The
control policy µ is memoryless if each µi only depends on its
current state si. In contrast, µ is called a finite-memory (i.e.,
history-dependent) policy if µi depends on its past states.

In this work, we consider the stochastic policy. Let µ(s)
denote the probability distribution of actions at state s, and
µ(s, a) represent the probability of generating action a at state
s using the policy µ.

Definition 3. Given a PL-MDP P under policy π, a Markov
chain MCµM of the PL-MDP M induced by a policy µ is a
tuple (S,A, pµS , (s0, l0) , L, pL) where pµS (s, s′) = pS(s, a, s′)
with µ(s, a) > 0 for all s, s′ ∈ S.

Definition 4. A sub-MDP M(S′,A′) of M is a pair (S′, A′)
where S′ ⊆ S and A′ is a finite action space of S′

such that (i) S′ 6= ∅, and A′(s) 6= ∅,∀s ∈ S′; (ii){
x′ ∈ X ′ | pP(x, u, x′) > 0,∀x ∈ X ′ and ∀u ∈ U ′(x)

}
. An

induced graph of M(S′,A′) is denoted as G(S′,A′) that is a
directed graph, where if pS(s, a, s′) > 0 with a ∈ A′(s),
for any s, s′ ∈ S′, there exists an edge between s and s′

in G(S′,A′). A sub-MDP is a strongly connected component
(SCC) if its induced graph is strongly connected such that for
all pairs of nodes s, s′ ∈ S′, there is a path from s to s′. A
bottom strongly connected component (BSCC) is an SCC from
which no state outside is reachable by applying the restricted
action space.

Remark 1. Note the evolution of a sub-MDP M(S′,A′) is
restricted by the action space A′. Given a PL-MDP and one
of its SCCs, there may exist paths starting within the SCC and
ending outside of the SCC, whereas all paths starting from a
BSCC will always stay within the same BSCC. In addition, a
Markov chain MCπM is a sub-MDP of P induced by a policy
π, and its evolution is restricted by the policy µ.

Definition 5. [1] A sub-MDP M(S′,A′) is called an end
component (EC) of M if it’s a BSCC. An EC M(S′,A′) is
called a maximal end component (MEC) if there is no other EC
M(S′′,A′′) such that S′ ⊆ S′′ and A′ (s) ⊆ A′′ (s), ∀s ∈ S.

C. LTL and Limit-Deterministic Büchi Automaton

Linear temporal logic (LTL) is a formal language to describe
the high-level specifications of a system. The ingredients of an
LTL formula are a set of atomic propositions and combinations

of several Boolean and temporal operators. The syntax of an
LTL formula is defined inductively as

φ := True | a | φ1 ∧ φ2 | ¬φ | #φ | φ1Uφ2 ,

where a ∈ AP is an atomic proposition, True, negation
¬, and conjunction ∧ are propositional logic operators, and
next # and until U are temporal operators. The satisfaction
relationship is denoted as |=. The semantics of an LTL formula
are interpreted over words, which is an infinite sequence o =
o0o1 . . . where oi ∈ 2AP for all i ≥ 0, and 2AP represents the
power set of AP , which are defined as:

o |= true
o |= α ⇔ α ∈ L(o[0])
o |= φ1 ∧ φ2 ⇔ o |= φ1 and o |= φ2

o |= ¬φ ⇔ o |6= φ
o |= #φ ⇔ o[1 :] |= φ
o |= φ1Uφ2 ⇔ ∃t s.t. o[t :] |= φ2,∀t′ ∈ [0, t),o[t′ :] |= φ1

Alongside the standard operators introduced above, other
propositional logic operators such as false, disjunction ∨,
implication →, and temporal operators always �, eventually
♦ can be derived as usual. Thus an LTL formula describes a
set of infinite traces through S. Given an LTL formula that
specifies the missions, its satisfaction can be evaluated by a
limit deterministic Büchi automaton (LDBA) [34], [40].

Definition 6. An LDBA is a tuple A = (Q,Σ ∪ {ε} , δ, q0, F),
where Q is a finite set of states, Σ = 2AP is a finite alphabet,
{ε} is a set of indexed epsilons, each of which is enabled
for one ε−transition, δ : Q × (Σ ∪ {ε}) � 2Q is a transition
function, q0 ∈ Q is an initial state, and F is a set of accepting
states. The states Q can be partitioned into a deterministic set
QD and a non-deterministic set QN , i.e., Q = QD ∪ QN ,
where

• the state transitions in QD are total and restricted within
it, i.e.,

∣∣δ(q, α)
∣∣ = 1 and δ(q, α) ⊆ QD for every state

q ∈ QD and α ∈ Σ,
• the ε-transitions are only defined for state transitions from
QN to QD, and are not allowed in the deterministic set
i.e., for any q ∈ QD, δ(q, ε) = ∅,∀ε ∈ {ε},

• the accepting states are only in the deterministic set, i.e.,
F ⊆ QD.

An ε−transition allows an automaton to change its state
without reading any atomic proposition. The run q = q0q1 . . .
is accepted by the LDBA, if it satisfies the Büchi condition,
i.e., inf (q) ∩ F 6= ∅, where inf (q) denotes the set of
states that is visited infinitely often. As discussed in [41],
the probabilistic verification of automaton does not need to
be fully deterministic. In other words, the automata-theoretic
approach still works if the restricted forms of non-determinism
are allowed. Therefore, LDBA has been applied for the
qualitative and quantitative analysis of MDPs [34], [40]–[42].
To convert an LTL formula to an LDBA, readers are referred
to [40]. In the following analysis, we use Aφ to denote the
LDBA corresponding to an LTL formula φ.

Authorized licensed use limited to: The University of Iowa. Downloaded on January 01,2022 at 06:41:17 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3138704, IEEE
Transactions on Automatic Control

4

III. PROBLEM STATEMENT

Consider an LTL task specification φ over π and a PL-MDP
M = (S,A, pS , (s0, l0) ,π, L, pL, cA). It is assumed that the
agent can sense its current state and the associated labels.
µ(sk, µk) represents the probability of selecting the control
input µk at time k for state sk using policy µ. The agent’s
path sµ∞ = s0l0 . . . silisi+1li+1 . . . under a control sequence
µ∞ = µ0µ1 . . . is generated based on policy µ such that
si+1 ∈

{
s ∈ S

∣∣pS (si, µi, s) > 0
}

, µ(si, µi) > 0, and li ∈
L (si) with pL (si, li) > 0. Let L (sµ∞) = l0l1 . . . lili+1 . . .
be the sequence of labels associated with sµ∞, and denote by
L (sµ∞) |= φ if sµ∞ satisfies φ. The probability measurement
of a run sµ∞ can be uniquely obtained by

PrµM(sµ∞) =
n∏
i=0

pL(si, li) · pS(si,µi(si), si+1) · µ(si, µi).

(1)
Then, the satisfaction probability under µ from an initial

state s0 can be computed as

PrµM(φ) = PrµM (sµ∞ ∈ S
µ
∞ |L(sµ∞) |= φ) , (2)

where Sµ∞ is a set of all admissible paths under policy µ.

Definition 7. Given a PL-MDP M, an LTL task φ is fully
feasible if and only if PrµM (φ) > 0 s.t. there exists a path sµ∞
over the infinite horizons under the policy µ satisfying φ.

Note that according to Def. 7, an infeasible case means there
exist no policies to satisfy the task, which can be interpreted
as PrµM(φ) = 0.

Definition 8. The expected average execution cost per stage
(AEPS) of a PL-MDP M under the policy µ is defined as

JE(Mµ) = EµM

[
lim sup
n→∞

1

n

n∑
i=0

cA (si, ai)

]
, (3)

where ai is the action generated based on the policy µ(si).

A common objective in the literature is to find a policy
µ such that PrµM (φ) is greater than the desired satisfaction
probability while minimizing the expected AEPS. However,
when operating in a real-world environment with uncertainties
in the dynamic system, the user-specified mission φ might not
be fully feasible, resulting in PrµM (φ) = 0 since there may
not exist a path sµ∞ such that L (sµ∞) |= φ.

Example 1. Fig. 1 considers the properties of interests AP =
{Base1, Base2, Obs} that label the environment and represent
the regions of Base 1, Base 2, and obstacles, respectively. A
robot is tasked to always eventually visit Base 1 and Base
2 while avoiding obstacles. The task can be expressed as an
LTL formula φexample = �♦Base1 ∧ �♦Base2 ∧ ¬Obs. The
labels of cells are assumed to be probabilistic, e.g., Obs : 0.5
indicates that the likelihood of a cell occupied by an obstacle
is 0.5. To model the motion uncertainty, the robot is allowed
to transit between adjacent cells or stay in a cell with a set of
actions {Up, Right, Down, Left, Stay}, and the cost of each
action is equal to 2. As shown in Fig. 1 (a), it’s assumed to
successfully take the desired action with a probability of 0.8,

Fig. 1. Example of environments where the LTL task is φexample =
�♦Base1∧�♦Base2∧¬Obs, and Base 1 is surrounded by obstacles with
different probabilities (infeasible). (a) Motion uncertainties and inaccessible
Base 1. (b) Base 1 can be visited with different risks under two different
policies.

and there is a probability of 0.2 to take other perpendicular
actions following a uniform distribution. There are no motion
uncertainties for the action of "Stay".

Fig. 1 (a) represents an infeasible case, where Base 1 is
surrounded by obstacles and thus cannot be visited, while
Base 2 is always accessible. Hence, it is desirable that the
robot can revise its motion planning to mostly fulfill the
given task (e.g., visit only Base 2 instead) whenever the task
over an environment is found to be infeasible. Furthermore,
it is essential to analyze the probabilistic violation of two
different policies, as shown in Fig. 1 (b), due to the
environment uncertainties. The generated trajectories have
different probabilities of colliding with obstacles and result
in different violation costs.

As a result, to consider both feasible and infeasible tasks,
a violation of task satisfaction can be defined as follows.

Definition 9. Given a PL-MDP M and an LTL task φ, the
expected average violation cost per stage (AVPS) under the
policy µ is defined as

JV (Mµ, φ) = EµM

[
lim inf
n→∞

1

n

n∑
i=0

cV (si, ai, si+1, φ)

]
, (4)

where cV (s, a, s′, φ) is defined as the violation cost of a
transition (s, a, s′) with respect to φ, and ai is the action
generated based on the policy µ(si).

Motivated by these challenges, the problem considered in
this work is stated as follows.

Problem 1. Given an LTL task φ and a PL-MDPM, the goal
is to find an optimal finite memory policy µ from the initial
state and achieve the multiple objectives with a decreasing
order of priority: 1) if φ is fully feasible, PrµM (φ) ≥ γ,
where γ ∈ (0, 1] is the desired satisfaction probability; 2) if
φ is partially feasible, i.e., PrµM (φ) = 0, minimizing AVPS
JV (Mµ, φ) to satisfy φ as much as possible; 3) minimizing
AEPS JE(Mµ) over the infinite horizons.

Due to the consideration of infeasible cases, by saying to
satisfy φ as much as possible in Problem 1, we propose a

Authorized licensed use limited to: The University of Iowa. Downloaded on January 01,2022 at 06:41:17 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3138704, IEEE
Transactions on Automatic Control

5

relaxed structure and its expected average violation function
to quantify how much the motion generated from a revised
policy deviates from the desired task φ and minimize such
a deviation. The concrete description of cV is introduced in
Section IV-B.

IV. RELAXED PRODUCT MDP ANALYSIS

First, Section IV-A presents the construction of LDBA-
based probabilistic product MDP. Then Section IV-B
synthesizes how it can be relaxed to handle infeasible
LTL constraints, and we concretely introduce the violation
measurement of infeasible cases. Finally, the properties of the
relaxed product MDP are discussed in Section IV-C, which
can be utilized to generate the optimal policy.

A. LDBA-based Probabilistic Product MDP

We first present the definition of LDBA-based probabilistic
product MDP.

Definition 10. Given a PL-MDP M and an LDBA
Aφ, the product MDP is defined as a tuple P =(
X,UP , pP , x0,Acc, cPA

)
, where X = S×2AP ×Q is the set

of labeled states s.t. X =
{

(s, l, q)
∣∣s ∈ S, l ∈ L(s), q ∈ Q

}
;

UP = A ∪ {ε} is the set of actions where the ε-transitions of
LDBA are regarded as actions; x0 = (s0, l0, q0) is the initial
state; Acc =

{
(s, l, q) ∈ X

∣∣q ∈ F} is the set of accepting
states; the cost of taking an action uP ∈ UP at x = (s, l, q)
is defined as cPA

(
x, uP

)
= cA (s, a) if uP = a ∈ A (s)

and cPA
(
x, uP

)
= 0 otherwise; the transition function pP :

X × UP × X � [0, 1] is defined as: for x′ = (s′, l′, q′) in
X , 1) pP

(
x, uP , x′

)
= pL (s′, l′) · pS (s, a, s′) if δ (q, l) = q′

and uP = a ∈ A (s), 2) pP
(
x, uP , x′

)
= 1 if uP ∈ {ε},

q′ ∈ δ (q, ε), and (s′, l′) = (s, l), and 3) pP
(
x, uP , x′

)
= 0

otherwise.

Let πP denote the policy over P . The product MDP P
captures the intersections between all feasible paths over M
and all words accepted to Aφ, facilitating the identification of
admissible motions that satisfy the task φ. The path xπP∞ =
x0 . . . xixi+1 . . . under a policy πP is accepted if inf (xπP∞)∩
Acc 6= ∅. If a sub-product MDP P ′(X′,U ′) is an MEC of P
and X ′ ∩Acc 6= ∅, P ′(X′,U ′) is called an accepting maximum
end component (AMEC) of P . Details of generating AMEC
for a product MDP can be found in [1]. Note synthesizing the
AMECs doesn’t require finding a set of policies that restrict
the selections of actions for each state.

Denote by Ξacc =
{

Ξiacc, i = 1 . . . nPacc
}

the set of all
AMECs of P , where Ξiacc = P ′

(X′i,U ′i)
with X ′i ⊆ X and

U ′i ⊆ UP and nPacc is the number of AMECs in P . Satisfying
the LTL task φ is equivalent to finding a policy πP that drives
the agent enter into one of an AMEC Ξiacc in P . Based on
that, we can define the feasibility over product MDP.

Lemma 1. Given a product MDP P constructing from a PL-
MDP M and Aφ, the LTL task is fully feasible if and only if
there exists at least one AMEC in P [1].

As a result, if an LTL task is feasible with respect to the PL-
MDP model, there exits at least one AEMC in corresponding

to the product MDP, and satisfying the task φ is equivalent
to reaching an AMEC in Ξacc. For the cases that AMECs
do not exist in P , most existing works [1], [16], [43],
[44], and the work of [17] considered accepting strongly
connected components (ASCC) to minimize the probability
of entering bad system states. However, there is no guarantee
that the agent will stay within an ASCC to yield satisfactory
performance, especially when the probability of entering bad
system states is large. Also, the existence of ASCC is based
on the existence of an accepting path, returns no solution for
the case of Fig. 1 (b). Moreover, for the infeasible cases,
the work [17] needs first to check the existence of AMECs
and then formulate ASCCs, whereas generating of AMECs
is computationally expensive. In contrast, this frame designs
a relaxed product MDP in the following, which allows us to
apply its AMECs addressing both feasible and infeasible cases.

B. Relaxed Probabilistic Product MDP

For the product MDP P in Def. 10, the satisfaction of φ is
based on the assumption that there exists at least one AMEC
in P . However, such an assumption can not always be true in
practice. To address this challenge, the relaxed product MDP is
designed to allow the agent to revise its motion plan whenever
the desired LTL constraints cannot be strictly followed.

Definition 11. The relaxed product MDP is constructed from
P as a tuple R =

(
X,UR, pR, x0,Acc, cRA , c

R
V

)
, where

• X , x0, and Acc are the same as in P .
• UR is the set of extended actions that are extended

to jointly consider the actions of M and the input
alphabet of Aφ. Specifically, given a state x =
(s, l, q) ∈ X , the available actions are UR (x) ={

(a, ι)
∣∣a ∈ A (s) , ι ∈

(
2AP ∪ {ε}

)}
. Given an action

uR = (a, ι) ∈ UR (x), the projections of uR to A (s)

in M and to 2AP ∪ {ε} in Aφ are denoted by u
∣∣R
M and

u
∣∣R
A , respectively.

• pR : X × UR × X � [0, 1] is the transition
function. The transition probability pR from a state
x = (s, l, q) to a state x′ = (s′, l′, q′) is defined as:
1) pR

(
x, uR, x′

)
= pL (s′, l′) · pS (s, a, s′) with a =

u
∣∣R
M, if q can be transited to q′ and u

∣∣R
A 6= ε and

δ
(
q, u
∣∣R
A

)
= q′; 2) pR

(
x, uR, x′

)
= 1, if u

∣∣R
A = ε,

q′ ∈ δ (q, ε), and (s′, l′) = (s, l); 3) pR
(
x, uR, x′

)
= 0

otherwise. Under an action uR ∈ UR (x), it holds that∑
x′∈X p

R (x, uR, x′) = 1.

• cRV : X ×UR � R is the execution cost. Given a state x
and an action uR, the execution cost is defined as

cRA (x, uR) =

{
cA (s, a) if u

∣∣R
M ∈ A (s) ,

0 otherwise.

• cRV : X×UR×X � R is the violation cost. The violation
cost of the transition from x = (s, l, q) to x′ = (s′, l′, q′)

Authorized licensed use limited to: The University of Iowa. Downloaded on January 01,2022 at 06:41:17 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3138704, IEEE
Transactions on Automatic Control

6

under an action uR is defined as

cRV
(
x, uR, x′

)
=

{
pL (s′, l′) ·wV (x, x′) if u

∣∣R
A 6= ε,

0 otherwise,

where wV (x, x′) = Dist (L (s) ,X (q, q′)) with
X (q, q′) =

{
l ∈ 2π

∣∣∣q l� q′
}

being the set of input
alphabets that enables the transition from q to q′.
Borrowed from [20], the function Dist (L (s) ,X (q, q′))
measures the distance from L (s) to the set X (q, q′).

Remark 2. Given a PL-MDP M and Aφ, the relaxed product
MDP R holds the same state space as the corresponding
product MDP P . The main difference compared with P is
that the R has a different action space with revised transition
conditions so that R has a more connected structure. In
addition, we propose the violation cost for each transition
to measure the AVPS over the relaxed product model R.
The complexity analysis of applying the relaxed product
MDP is discussed in Section V-E. Note that the environment
uncertainties influence the transition probabilities of a relaxed
product MDP, and in turn, affect the probabilities of entering
into AMECs.

The weighted violation function wV (x, x′) quantifies
how much the transition from x to x′ in a product
automaton violates the constraints imposed by φ. It holds
that cRV

(
x, uR, x′

)
= 0 if pP

(
x, uP , x′

)
6= 0, since a

non-zero pP
(
x, uP , x′

)
indicates either δ (q, L (s)) = q′ or

δ (q, ε) = q′, leading to wV (x, x′) = 0. Let π denote the
policy of R. Consequently, we can transform the measurement
of AEPS, and AVPS JV (Mµ, φ) from PL-MDP M into R.

Definition 12. Given a relaxed product MDP R generated
from a PL-MDPM and an LDBA Aφ, the AEPS of R under
policy π can be defined as:

JE(Rπ) = EπR

[
lim inf
n→∞

1

n

n∑
i=0

cRA (xi, u
R
i)

]
. (5)

Similarly, the AVPS of R can be reformulated as:

JV (Rπ) = EπR

[
lim inf
n→∞

1

n

n∑
i=0

(cRV
(
xi, u

R
i , xi+1

)
)

]
. (6)

Hence, JV (Rπ) can be applied to measure how much
φ is satisfied in Problem 1. It should be pointed out that
the violation cost cRV jointly considers the probability of
an event pL (s′, l′) and the violation of the desired φ. For
instance, Fig. 1 (b) shows the trajectories generated from
two different policies that traverse regions labeled Obs with
different probabilities. It’s obvious that the task of infinitely
visiting Base1 and Base2 is infeasible. The paths induced from
different policies hold different AVPSs for partial satisfaction.
Consequently, a large cost cRV can occur if pL (s′, l′) is close
to 1 (e.g., an obstacle appears with high probability), or the
violation wV is large, or both are large. Hence, minimizing
the AVPS will not only bias the planned path towards more
fulfillment of φ by penalizing wV , but also towards more
satisfaction of mission operation (e.g., reduce the risk of
mission failures by avoiding areas with high probability

obstacles). This idea is illustrated via simulations in Case 2 in
Section VI.

C. Properties of Relaxed Product MDP
Given an LTL formula φ and a PL-MDP M, this section

verifies properties of the designed relaxed product MDP R,
which can be applied to solve feasible cases where there
exists at least one policy µ such that PrµM (φ) > 0, and
infeasible cases where PrµM (φ) = 0 for any policy µ.
Based on definition 11, the relaxed product MDP R and its
corresponding product MDP P have the same states. Hence,
we can regard R and P as two separate directed graphs. Let
ABSCC denote the BSCC that contains at least one accepting
state in P or R.

Theorem 1. Given a PL-MDP M and an LDBA automaton
Aφ corresponding to the desired LTL task specification φ,
the relaxed product MDP R =M⊗Aφ and corresponding
product MDP P have the following properties:

1) the directed graph of traditional product P is sub-graph
of the directed graph of R,

2) there always exists at least one AMEC in R,
3) if the LTL formula φ is feasible over M, any direct

graph of AMEC of P is the sub-graph of a direct graph
of AMEC of R.

Proof. Property 1: by definition 10, there is a transition
between x = 〈s, l, q〉 and x′ = 〈s′, l′, q′〉 in P , if and only if
pP
(
x, uP , x′

)
6= 0. There are two cases for pP

(
x, uP , x′

)
6=

0: i) ∃l ∈ L(s), δ(q, l) = q′ and pS (s, a, s′) 6= 0 with uP = a;
and ii) q′ ∈ δ (q, ε) and uP = ε. In the relaxed R, for case
i), there always exist u

∣∣R
A = L (s) and u

∣∣R
M = uP = a

with pS (s, a, s′) 6= 0 such that pR
(
x, uR, x′

)
6= 0. For case

ii), based on the fact that q′ ∈ δ (q, ε), there always exists
u
∣∣R
A = ε such that pR

(
x, uR, x′

)
6= 0. Therefore, any existing

transition in P is also preserved in the corresponding relaxed
product MDP R.

Property 2: as indicated in [34], for an LDBA Aφ, there
always exists a BSCC that contains at least one of the
accepting states. Without loss of generality, let QB ⊆ Q be a
BSCC of Aφ s.t. QB ∩F 6= ∅. Denote by M(S′,A′) an EC of
M. By the definition of the relaxed product MDP R =M⊗
Aφ, we can construct a sub-product MDP R(XB ,URB) such
that x = 〈s, l, q〉 ∈ XB with s ∈ S′ and q ∈ QB . For
each uRB (x) ∈ URB , we restrict uRB (x) = (A (s) , lB) with
A (s) ∈ A′ and δ (q, lB) ∈ QB . As a result, we can obtain that
an EC R(XB ,URB) that contains at least one of the accepting
states due to the fact i.e. QB ∩F 6= ∅. Therefore, there exists
at least an AMEC in the relaxed R.

Property 3: if φ is feasible over M, there exist AMECs
in both P and R. Let ΞP and ΞR be an AMEC of P and
R, respectively. From graph perspectives, ΞP and ΞR can
be considered as BSCCs G(ΞP) ⊆ G(X,UP) and G(ΞR) ⊆
G(X,UR) containing accepting states, respectively. According
to Property 1, it can be concluded that for any G(ΞP), we can
find a G(ΞR) s.t. G(ΞP) is a sub-graph of G(ΞR)

Theorem 1 indicates that the directed graph of R is more
connected than the directed graph of the corresponding P .

Authorized licensed use limited to: The University of Iowa. Downloaded on January 01,2022 at 06:41:17 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3138704, IEEE
Transactions on Automatic Control

7

Fig. 2. (a) The LDBA Aφ. (b) The MDP M. (c) The constrained product
MDP. (d) The relaxed product MDP.

Therefore, there always exists at least one AMEC in R even
for the infeasible cases, which allows us to measure the
violation with respect to the original LTL formula. Moreover,
if a given task φ is fully feasible in P (there exists a
policy πP such that its induced path xπP over P satisfying
φ i.e. PrµM (φ) > 0). Also, there must exist a policy π.
s.t. its induced path xπ over R is free of violation cost. In
other words, R can also handle feasible tasks by identifying
accepting paths with zero AVPS.

Example 2. To illustrate Theorem 1, a running example is
shown here. Consider an LDBA Aφ corresponding to φ =
�♦a∧�♦b and an MDP M as shown in Fig. 2 (a) and (b),
respectively. For ease of presentation, partial structures of the
product MDPs P = M⊗Aφ and R = M⊗Aφ are shown
in Fig. 2 (c) and (d), respectively. Since the LTL formula φ
is infeasible over M, there is no AMEC in P , whereas there
exists one in R. Note that there is no ε-transitions in this case.

Given an accepting path xπ∞ = x0 . . . xixi+1 . . ., we
propose to regulate the multi-objective optimization objective
consisting of implementation cost and violation cost for each
transition as:

cR
(
xi, u

R
i , xi+1

)
= cRA

(
xi, u

R
i

)
·max

{
eβc
R
V (xi,u

R
i ,xi+1), 1

}
(7)

where β ∈ R+ indicates the relative importance. Based on (7),
the expected average regulation cost per stage (ARPS) of R

under a policy π is formulated as:

J(Rπ) = EπR

[
lim inf
n→∞

1

n

n∑
i=0

cR
(
xi, u

R
i , xi+1

)]
. (8)

In this work, we aim at generating the optimal policy π that
minimizes the ARPS J(Rπ), while satisfying the acceptance
condition of R.

Lemma 2. By selecting a large parameter β >> 1 of (7) the
first priority of minimizing the AVPS JV (Rπ) in ARPS J(Rπ)
is guaranteed such that minimizing the AEPS with weighting
β will never come at the expense of minimizing AVPS i.e.,
JV (Rπ) ≥ JV (Rπ′) =⇒ J(Rπ) ≥ J(Rπ′).

Lemma 2 can be directly verified based on formulating the
exponential function in (7).

Problem 2. Given an R from M and Aφ, Problem 1 can be
formulated as

min
π∈π̄

J(Rπ)

s.t. PrπM (@♦Acc) ≥ γ
(9)

where β >> 1, π̄ represents the set of admissible policies over
R, PrπM (@♦Acc) is the probability of visiting the accepting
states of R infinitely often, and γ is the desired threshold for
the probability of task satisfaction.

Remark 3. When the LTL task with respect to the PL-MDP
is infeasible, the threshold γ represents the probability of
entering into any of an AMEC inR. Furthermore, for the cases
where there exist no policies satisfying PrπM (@♦Acc) ≥ γ
for a given γ, the above optimization Problem 2 is infeasible,
and returns no solutions. However, we can regard γ as a slack
variable, and technical details are explained in remark 4.

V. SOLUTION

The prefix-suffix structure of LTL satisfaction over an
infinite horizon is inspired by the following Lemma

Lemma 3. Given any Markov chain MCπP under policy π,
its states can be represented by a disjoint union of a transient
class Tπ and nR closed irreducible recurrent classes Rjπ , j ∈
{1, . . . , nR} [45].

Given any policy, Lemma 3 indicates that the behaviors
before entering into AMECs involve the transient class, and
a recurrent class represents the decision-making within an
AMEC. Note that Lemma 3 provides a general form of state
partition that can be applied to any MDP model. This section
shows how to integrate the state partition with a relaxed
product MDP. Especially, we analyze states partition to divide
Problem 2 into two parts and focus on synthesizing the optimal
prefix and suffix policies via linear programming (LP), which
addresses the trade-off between minimizing the ARPS (Section
V-C) over a long term and reaching the probability threshold
of task satisfaction.

This solution framework mainly focuses on adopting
the ideas of prefix-suffix plans and the method of MDP
optimization for relaxed product structures. The details about
the intuition, i.e., the analysis of policies over an infinite

Authorized licensed use limited to: The University of Iowa. Downloaded on January 01,2022 at 06:41:17 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3138704, IEEE
Transactions on Automatic Control

8

Fig. 3. The illustration of the partition of X in R, where x7 is an accepting
state. The edges with and without violation cost are marked.

horizons, computation of AMECs, and linear programming,
can be found in [1], [16], [18].

A. State Partition

According to Property 1 of Theorem 1, let ΞRi =
(
Xi, U

R
i

)
denote an AMEC of R and let ΞRacc =

{
ΞR1 , . . . ,Ξ

R
N

}
denote

the set of AMECs. To facilitate the analysis, the state X of R
is divided into a transient class XT and a recurrent class XR,
where XR = ∪(Xi,URi)⊆ΞRacc

Xi is the union of the AMEC
states of R and XT = X \XR. Let Xr ⊆ XT and X¬r ⊆ XT

denote the set of states that can and cannot be reached from the
initial state x0, respectively. Since the states in X¬r cannot be
reached from x0 (i.e., bad states), we will only focus on Xr,
which can be further divided into Xn and X¬n based on the
violation conditions. Let X¬n and Xn be the set of states that
can reach XR with and without violation edges, respectively.
Based on Xn , X¬n and XR, let Xtr, X

′
tr ⊆ XR denote the

sets of states that can be reached within one transition from
Xn and X¬n, respectively. An example is provided in Fig. 3
to illustrate the partition of states.

B. Plan Prefix

The objective of plan prefix is to construct an optimal policy
that drives the agent from x0 to Xtr ∪X ′tr while minimizing
the combined average cost. To achieve this goal, we construct
the prefix MDP model of R to analyze the prefix behaviors
under any policy.

Definition 13. A prefix MDP of R can be defined as Rpre ={
Xpre, U

R
pre, p

R
pre, x0, c

R
Apre

, cRVpre

}
of R, where

• Xpre = Xr ∪Xtr ∪X ′tr ∪ v, where v is a trap state that
models the behaviors within the union of AMECs.

• The set of actions is URpre = UR∪τ , where τ represents a
self-loop action only enabled at state v s.t. τ = Upre(v),
and URpre(x) is the actions enabled at x ∈ Xpre.

• The transition probability pRpre, is defined as: (i)
pRpre(x, u

R, x̄) = pR(x, uR, x̄), ∀x ∈ Xr, x̄ ∈ Xpre \ v,
and ∀uR ∈ UR (x); (ii) pRpre(x, u

R, v) = 1, ∀x ∈ Xtr ∪
X ′tr, u

R ∈ UR (x) and v ∈ V; (iii) PRpre(v, τ, v) = 1,

• The implementation cost is defined as: (i) cRApre(x, u
R) =

cRA (x, uR), ∀x ∈ Xr and uR ∈ UR (x); and (ii)
cRApre(x, u

R) = cRApre(v, τ) = 0, ∀x ∈ Xtr ∪X ′tr,

• The violation cost is defined as: cRVpre(x, u
R, x̄) =

cRV (x, uR, x̄), ∀x ∈ Xr, x̄ ∈ Xr ∪ Xtr, uR ∈ UR (x);
cRVpre(x, u

R, x̄) = 0 otherwise.

In Def. 13, v is the trap state s.t. there’s only self-loop
action enabled at the state. The agent’s state remains the
same once it enters the trap state. Therefore, the optimization
process of desired policy over prefix product MDP Rpre can
be formulated as

min
π∈π̄pre

EπRpre

[
lim sup
n→∞

1
n

n∑
i=0

cRpre
(
xi, u

R
i , xi+1

)]
s.t. Prπx0,Rpre(♦v) ≥ γ,

(10)

where π̄pre represents a set of all admissible policies
over Rpre, Prπx0,Rpre (♦v) denotes the probability of xpre
starting from x0 and eventually reaching the trap state v, and
cRpre(xi, u

R
i , xi+1) is the regulation cost for each transition

such that

cRpre(xi, u
R
i , xi+1) = cRApre(xi, u

R
i)

·max
{
e
β·cRVpre (xi,u

R
i ,xi+1)

, 1
}
.

(11)

In the prefix plan, the policies of staying within AMECs can
be modeled by adding the trap state v. Based on the station
partition in Section V-A, reaching an AMEC ofR is equivalent
to reaching the set Xtr ∪X ′tr. Furthermore, since there exist
policies under which paths starting from Xr to Xtr ∪ X ′tr
only traverse the transitions with zero violation cost and the
cost of staying at v is zero, a large β in cRpre is employed to
search policies minimizing the AVPS over Rpre as the first
priority. It should be noted that there always exists at least
one solution π in (10). This is because AMECs in R always
exist by Theorem 1, and we can always obtain a valid prefix
MDP Rpre of R.

Inspired by the network flow approaches [18], [19], (10) can
be reformulated as a graph-constrained optimization problem
and solved through LP. Especially, let yx,u denote the expected
number of times over the infinite horizons such that x is visited
with u ∈ URpre. It measures the state occupancy among all
paths starting from the initial state x0 under policy π in Rpre,
i.e., yx,u =

∞∑
i=0

Prπx0,Rpre
(
xi = x, uRi = u

)
. Then, we can

solve (10) as the following LP:

Authorized licensed use limited to: The University of Iowa. Downloaded on January 01,2022 at 06:41:17 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3138704, IEEE
Transactions on Automatic Control

9

Fig. 4. Simulated trajectories with different γ under optimal prefix policies.
(a) γ = 0.3. (b) γ = 1.0.

min
{yx,u}

[
Jpre

M
=
∑

(x,u)

∑
x̄∈Xpre

yx,u · pRpre (x, u, x̄) · cRpre (x, u, x̄)

]

s.t.
∑

(x,u)

∑
x̄∈(Xtr∪X′tr)

yx,u · pRpre (x, u, x̄) ≥ γ

∑
u′∈URpre(x′)

yx′,u′ =
∑

(x,u)

yx,u · pRpre(x, u, x′) + χ0 (x′)

yx,u ≥ 0,∀x′ ∈ Xr

(12)
where χ0 is the distribution of initial state, and

∑
(x,u)

:=∑
x∈(Xr∪Xtr∪X′tr)

∑
u∈URpre(x)

.

Once the solution y∗x,u to (12) is obtained, the optimal
stochastic policy π∗pre can be generated as

π∗pre(x, u) =

y∗x,u∑

u∈URpre(x)

y∗x,u
if x ∈ X∗r ,

1∣∣URpre(x)
∣∣ if x ∈ Xpre \X∗r ,

(13)

where X∗r =

{
x ∈ Xr

∣∣∣∣∣ ∑
u∈URpre(x)

y∗x,u > 0

}
.

Lemma 4. The optimal policy π∗pre in (13) ensures that
Prπx0,Rpre (♦v) ≥ γ.

Proof. The proof is similar to Lemma 3.3 in [46]. Due to the
transient class of Xr, yx,u is finite. In first constraint of (12),
the sum

∑
(x,u)

∑
x̄∈(Xtr∪X′tr)

yx,u · pRpre (x, u, x̄) is the expected

number of times that Xtr ∪ X ′tr can be reached for the first
time from a given initial state under the policy π∗pre. Since
the agent remains in v once it enters Xtr ∪ X ′tr, the sum is
the probability of reaching XR, which is lower bounded by
γ. The second constraint of (12) guarantees the balances of
network flow for the distribution of initial states.

Example 3. As a running example in Fig. 4, we illustrate
the importance of the threshold γ that balances the trade-off
between optimizing the ARPS and reaching the probability
of satisfaction. The motion uncertainties and the action cost
are set the same as in Example 1. An LTL task is considered
as φpre = ♦(B1 ∧ ♦B2) that requires visiting region B1 first

and then B2 sequentially. φpre is feasible with respect to the
corresponding PL-MDP (B2 is surrounded by probabilistic
obstacles). Fig. 4 shows the results with two different γ under
generated prefix optimal policies. It can be observed how such
a parameter impacts the optimization bias since γ represents
the quantitative probabilistic satisfaction [1].

Remark 4. The pre-defined threshold may influence the
feasibility of the optimization (12) when there exist no
policies s.t. Prπx0,Rpre(♦v) ≥ γ. Since LP is a linear convex
optimization [18], [19], to alleviate the issue, we can treat γ
as a slack variable such that (12) can be reformulated as:

min
π∈π̄pre

EπRpre

[
lim sup
n→∞

1
n

n∑
i=0

cRpre
(
xi, u

R
i , xi+1

)]
+ wγ · γ

s.t. Prπx0,Rpre(♦v) ≥ γ,
(14)

where wγ is a regulation parameter that can be designed based
on the users’ preference for the multi-objective problems.
Then, directly adopting the optimization process as the same
as (12) and (13) can find feasible solutions.

Because the optimization of (14) increases the
computational complexity, it is only applied when the
formulation (12) returns no solution.

C. Plan Suffix

Suppose the prefix optimal policy π∗pre drives the RL-agent
into one AMEC ΞRj of ΞRacc. This section considers the long-
term behavior of the agent inside AMEC ΞRj . Since the agent
can enter any AMEC, let ΞRj =

(
Xj , U

R
j

)
⊆ ΞRacc denote such

an AMEC and Xtr
j = Xj∩(Xtr∪X ′tr) denote the set of states

that can be reached from plan prefix xpre. As a result, Xtr
j

can be treated as an initial state for plan suffix after entering
the AMEC. The objective of suffix policies is to enforce the
accepting conditions and consider the optimization of long-
term behavior. Therefore, after the agent entering into AMEC
ΞRj , the optimization process of the desired policy over ΞRj
can be formulated:

min
π∈π̄

ΞR
j

Eπ
ΞRj

[
lim sup
n→∞

1
n

n∑
i=0

cR
(
xi, u

R
i , xi+1

)]
s.t. inf(xπ

ΞRj
) ∩Acc 6= ∅,∀xπ

ΞRj
∈Xπ

ΞRj
,

(15)

where π̄ΞRj
represents a set of all admissible policies over ΞRj ,

Xπ
ΞRj

is the set of all paths over the finite horizons under the
policy π, and cR is the regulation transition cost in (7).

Let Aj denote a set of accepting states in Xj of ΞRj , i.e.,
Aj = Xj ∩Acc. Consequently, the acceptance condition of R
can be satisfied s.t. inf(xπ

ΞRj
)∩Acc 6= ∅. One infinite accepting

path xπ
ΞRj

can be regarded as a concatenation of an infinite
number of cyclic paths starting and ending in the set Aj .

Definition 14. A cyclic path xc = x1 . . . xNxc associated with
ΞRj is a finite path with horizons Nxc starting and ending at
any subset X ′j ⊆ Xj , i.e., x1, xNxc ∈ X

′
j , while actions are

restricted to URj to remain within Xj . A cyclic path xc is
called an accepting cyclic path if it starts and ends at Aj , i.e.,
x1, xNxc ∈ Aj .

Authorized licensed use limited to: The University of Iowa. Downloaded on January 01,2022 at 06:41:17 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3138704, IEEE
Transactions on Automatic Control

10

By definition 14, the optimization problem (15) over the
infinite horizons can be reformulated as

min
π∈π̄

ΞR
j

Exc∈Xπ

ΞR
j
,cycle

[
1
Nxc

Nxc∑
i=1

(
cR
(
xi, u

R
i , xi+1

))]
s.t. x1, xNxc ∈ Aj ,∀xc ∈X

π
ΞRj ,cycle

(16)
where Xπ

ΞRj ,cycle
is a set of all cyclic paths under policy

π over the AEMC ΞRj , the mean cyclic cost 1
N̄

t+N̄∑
i=t(

cR
(
xi, u

R
i , xi+1

))
corresponds to the average cost per stage,

and the constraint requires all induced cyclic paths under
policy π are accepting cyclic paths.

Similarly, inspired from [43], [44], we can also construct
the suffix MDP model of R based on the state partition. Then
(16) can be solved through LP. In order to apply the network
flow algorithm to constrain paths starting from and ending at
Aj , we need to transform accepting cyclic paths into the form
of acyclic paths. To do so, we split Aj to create a virtual
copy Aoutj that has no incoming transitions from Aj and a
virtual copy Ainj that only has incoming transitions from Aj ,
which allows representing a cyclic path as an acyclic path
starting from Aoutj and ending in Ainj . To convert the analysis
of cyclic paths into acyclic paths, we construct the following
suffix MDP of R for ΞRj .

Definition 15. A suffix MDP of R can be defined as Rsuf ={
Xsuf , U

R
suf , p

R
suf , D

R
tr , c

R
Asuf

, cRVsuf

}
where

• Xsuf = (Xj\Aj) ∪Aoutj ∪Ainj .
• URsuf = URj ∪ τ with URsuf (x) = τ,∀x ∈ Ainj , where
URsuf (x) is the actions enabled at x ∈ Xsuf .

• The transition probability pRsuf can be defined as
follows: (i) pRsuf (x, uR, x) = pR(x, uR, x), ∀x, x ∈
(Xj\Aj) ∪ Aoutj and uR ∈ URj ; (ii) pRsuf (x, uR, x) =

pR(x, uR, x),∀x ∈ (Xj\Aj) ∪ Aoutj , x ∈ Ainj and
uR ∈ URj ; (iii) pRsuf (x, τ, x) = 1, ∀x, x ∈ Ainj .

• The implementation cost is defined as: (i) cRAsuf (x, uR) =

cRA (x, uR), ∀x ∈ Xj\Aj ∪ Aoutj and uR ∈ URj ; and (ii)
cRAsuf (x, τ) = 0, ∀x ∈ Ainj .

• The violation cost is defined as: (i) cRVsuf (x, uR, x) =

cRV (x, uR, x), ∀x, x ∈ (Xj\Aj)∪Aoutj and uR ∈ URj ; (ii)
cRVsuf (x, uR, x) = cRV (x, uR, x),∀x ∈ (Xj\Aj) ∪ Aoutj ,
x ∈ Ainj and uR ∈ URj ; and (iii) cRVsuf (x, τ, x) =

0,∀x, x ∈ Ainj .

• The distribution of the initial state DRtr : Xsuf � R
is defined as (i) DRtr (x) =

∑
x̂∈Xn

∑
uR∈UR

y∗pre(x̂, u
R) ·

PR(x̂, uR, x), if x ∈ Xtr
j ; (ii) DRtr (x) = 0 if x ∈

Xsuf\Xtr
j , where Xn is a set of states that can reach

XR in transient class.

Let zx,u = z (x, u) denote the long-term frequency that the

Algorithm 1 Synthesis and execution of complete policy

1: procedure INPUT: (M , φ, and β)
Output: the optimal policy π∗ and µ∗

Initialization: Construct Aφ and R =M×Aφ
2: Set t = 0 and the execution horizons T .
3: Construct AMECs ΞRacc =

{
ΞR1 , . . . ,Ξ

R
N

}
.

4: Construct Xr ,Xn, X¬n, Xtr, X′tr .
5: if Xr = ∅ then
6: ΞRacc can not be reached from x0 and no π∗ exists;
7: else
8: Construct Rpre.
9: for each ΞRj ⊆ ΞRacc do

10: Construct Rsuf .
11: end for
12: Obtain π∗ by solving the coupled LP in 19.
13: Set xt = x0 = (s0, l0, q0) and st = s0.
14: Set sM = xt
15: while t ≤ T do
16: Select an action uRt according to π∗ (xt).
17: Obtain st+1 in M by applying action at = ut

∣∣R
M.

18: Observe lt+1 .
19: Set xt+1 = (st+1, lt+1, qt+1).
20: Update s by concatenating xt+1.
21: t+ +.
22: end while
23: Return µ∗ (s [: t] , L(s [: t])) ∀t = 0, 1 . . . T .
24: end if
25: end procedure

state is at x ∈ Xsuf \Ainj and the action u is taken. Then, to
solve (16), the following LP is formulated as

min
{zx,u}

[
JΞRj

M
=
∑

(x,u)

∑
x∈Xsuf

zx,up
R
suf (x, u, x̄) cRsuf (x, u, x̄)

]

s.t.
∑

u′∈URsuf (x′)

zx′,u′ =
∑

(x,u)

zx,u · pRsuf (x, u, x′) +DRtr (x′)

∑
(x,u)

∑
x∈Ainj

zx,u · pRsuf (x, u, x̄) =
∑

x∈X′suf
DRtr (x) ,

zx,u ≥ 0,∀x′ ∈ X ′suf
(17)

where X ′suf = Xsuf \ Ainj ,
∑

(x,u)

:=
∑

x∈X′suf

∑
u∈URsuf (x)

, and

cRsuf (x, u, x̄) = cRAsuf (x, u) · max
{
e
β·cRVsuf (x,u,x̄)

, 1
}

. The
first constraint represents the in-out flow balance, and the
second constraint ensures that Ainj is eventually reached. Note
that (15) and (16) are defined for the suffix MDP ΞRj , whereas
(17) is formulated over the suffix MDP Rsuf .

Once the solution z∗x,u to (17) is obtained, the optimal policy
can be generated by

π∗suf (x, u) =

z∗x,u∑

u∈UR
suf

(x)

z∗x,u
, if x ∈ X∗j ,

1∣∣URsuf (x)
∣∣ , if x ∈ Xsuf \X∗j

(18)

where X∗j =

x ∈ Xj

∣∣∣∣∣∣ ∑
u∈URsuf (x)

z∗x,u > 0

.

Lemma 5. The plan suffix π∗suf in (18) solves (15) for the
suffix MDP of AMEC ΞRj .

Proof. Due to the fact that all input flow from the transient

Authorized licensed use limited to: The University of Iowa. Downloaded on January 01,2022 at 06:41:17 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3138704, IEEE
Transactions on Automatic Control

11

Fig. 5. Simulated trajectories with different suffix policies. (a) Optimal policy
generated from our framework. (2) The Round-Robin Policy.

class will eventually end up in Ainj , the second constraint in
(17) guarantees the states in Ainj can be eventually reached
from x ∈ Xsuf\Ainj . Thus, the solution of (17) indicates the
accepting states Aj can be visited infinitely often within the
AMEC ΞRj . Based on the construction of Rsuf , the objective
function in (17) represents the mean cost of cyclic paths
analyzed in (16), which is exactly the ARPS of suffix MDP
ΞRj in (15).

Remark 5. The above process that constructing suffix MDP
in definition 15, solving optimization problem (12), and
synthesizing suffix optimal policies (18) is repetitively applied
to every AMEC ΞRj of ΞRacc.

To demonstrate the efficiency of our approach, we apply
the widely used Round-Robin policy [1] for comparison in the
following example and Section VI. After the agent enters into
one AMEC ΞRi =

(
Xi, U

R
i

)
, an ordered sequence of actions

from URi (x),∀x ∈ Xi is created. The Round-Robin policy
guides the agent to visit each state by iterating over the ordered
actions, and this ensures all states of the AMEC are visited
infinitely often (i.e., satisfying the acceptance condition). For
decision-making within an AMEC, the Round-Robin policy
does not consider optimality.

Example 4. As another running example in Fig. 5, we
demonstrate the importance of optimizing ARPS to the motion
planning after entering into AMECs compared with the
Round-Rabin policy. The motion uncertainties and the action
cost are set as the same as in Example 1. An LTL task is
considered as φsuf = �♦B1∧�♦B2∧�♦B3 that requires to
infinitely often visit regions B1, B2 and B3. φsuf is infeasible
with respect to the corresponding PL-MDP (B3 is surrounded
by obstacles). Fig. 5 shows the results with two different
policies. Without minimizing the AVPS, the Round-Rabin
policy can not be applied to the infeasible cases using the
relaxed product MDP R. In addition, the framework in [17]
returns no solution for this example.

D. Complete Policy and Complexity

A complete optimal stationary policy π∗ can be obtained
by concatenating the procedure of solving the linear programs
in (12) and (17) as

min
{yx,u,zx,u}

(1− η) · Jpre + η ·
∑

ΞRj ∈ΞRAcc

JΞRj

s.t. Constraints in (12) and (17),

(19)

where Jpre, yx,u and JΞRj
, zx,u are defined in (12) and (17)

respectively, and η is a trade-off parameter to balance the
importance of minimizing the ARPS between prefix plan and
suffix plan. The (19) can be solved via any LP solvers i.e.,
Gurobi [47] and CPLEX 1. Once the optimal solutions y∗x,u
and z∗x,u are generated, we can synthesize the optimal policies
π∗pre and π∗suf via (13) and (18). The complete optimal policy
π∗ can be obtained by concatenating π∗pre and π∗suf for all
states of R.

Since π∗ is defined over R, to execute the optimal policy
overM, we still need to map π∗ to an optimal finite-memory
policy µ∗ ofM. Suppose the agent starts from an initial state
x0 = (s0, l0, q0) and the distribution of optimal actions at
t = 0 is given by π∗ (x0). Taking an action uR0 according
to π∗ (s0), the agent moves to s1 and observes its current
label l1, resulting in x1 = (s1, l1, q1) with q1 = δ

(
q0, u0

∣∣R
A

)
.

Note that q1 is deterministic if u0

∣∣R
A 6= ε. The distribution of

optimal actions at t = 1 now becomes π∗ (x1). Repeating
this process infinitely will generate a path xπ

∗

R = x0x1...

over R, corresponding to a path s = s0s1 . . . over M with
associated labels L(s) = l0l1 Such a process is presented
in Algorithm 1. Since the state xt is unique given the agent’s
past path s [: t] and past labels L(s [: t]) up to t, the optimal
finite-memory policy is designed as

µ∗ (s [: t] , L(s [: t])) =

π∗ (xt) , for ut

∣∣R
M = a,

0, for ut
∣∣R
A = ε.

(20)

From definition 11, the state st in xt remains the same if
ut
∣∣R
M = ε which gives rise to µ∗ (s [: t] , L(s [: t])) = 0 in

(20).

Theorem 2. Given a PL-MDP and an LTL formula φ, the
optimal policy µ∗ from (19) and in (20) solves the Problem 1
exactly s.t. achieve multiple objectives in order of decreasing
priority: 1) if φ is fully feasible, PrµM (φ) ≥ γ with γ ∈
(0, 1]; 2) if φ is infeasible, satisfy φ as much as possible via
minimizing AVPS; 3) minimize AEPS over the infinite horizons.

Proof. First, the optimal policy π∗ solves Problem 2 exactly.
Such a conclusion can be verified directly based on Theorem
1, Lemma 4, and Lemma 5. Because Problem 1 and Problem
2 are equivalent, the policy projection in (20) finds a policy
in M that solves Problem 1 exactly [1].

In Alg. 1, the overall policy synthesis is summarized in lines
1-12 of Alg. Note that the optimization process of suffix plan
(line 9-11) is applied to every AMEC of R. After obtaining

1https://www.ibm.com/analytics/cplex-optimizer

Authorized licensed use limited to: The University of Iowa. Downloaded on January 01,2022 at 06:41:17 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3138704, IEEE
Transactions on Automatic Control

12

the complete optimal policies, the process of executing such
a policy for PL-MDP M is outlined in lines 13-24.

Remark 6. The complete policy developed in the work can
handle both feasible and infeasible cases simultaneously, and
AMECs of relaxed product MDP are computed off-line once
based on the algorithms of [1].

E. Complexity Analysis

The maximum number of states is |X| = |S|×|Lmax (S)|×
|Q|, where |Q| is determined by the LDBA Aφ, |S| is the
size of the environment, and Lmax (S) is the maximum
number of labels associated with a state s ∈ S. Due to
the consideration of relaxed product MDP and the extended
actions, the maximum complexity of actions available at
x0 = (s0, l0, q0) ∈ X is O (|A (s)| × |Σ ∪ {ε}|). From [1], the
complexity of computing AMECs forR is O

(
|X|2

)
. The size

of LPs in (12) and (17) is linear with respect to the number of
transitions in R and can be solved in polynomial time [48].

VI. CASE STUDIES

Here considers a mobile agent operating in a grid
environment, which is a commonly used benchmark for
probabilistic model checking in the literature [9]–[11], [17].
There are properties of interest associated with the cells.
To model environment uncertainties, these properties are
assumed to be probabilistic. We consider the same motion
uncertainties as Example 1. The agent is allowed to transit
between adjacent cells or stay in a cell, i.e., the action space
is {Up, Right, Down, Left, Stay}, and the action costs are
[3, 4, 2, 3, 1]. To model the agent’s motion uncertainty caused
by actuation noise and drifting, the agent’s motion is also
assumed to be probabilistic. For instance, the robot may
successfully take the desired action with a probability of 0.85,
and there’s a probability of 0.15 to take other perpendicular
actions based on uniform distributions. There is no motion
uncertainty for the action of "Stay". In the following cases,
the algorithms developed in Section V are implemented, where
β = 100 is employed to encourage a small violation of the
desired task if the task is infeasible. The desired satisfaction
probability is set as γ = 0.9. Gurobi [47] is used to solve the
linear program problems in (12) and (17). All algorithms are
implemented in Python 2.7, and Owl [49] is used to convert
LTL formulas into LDBA. All simulations are carried out on
a laptop with a 2.60 GHz quad-core CPU and 8GB of RAM.

A. Case 1: Feasible Tasks

This case considers motion planning in an environment
where the desired task can be completely fulfilled. Suppose the
agent is required to perform a surveillance task in a workspace
as shown in Fig. 6 and the task specification is expressed in
the form of LTL formula as

ϕcase1 = (@♦base1) ∧ (@♦base2) ∧ (@♦base3)

∧ @ (ϕone → # ((¬ϕone) ∪ Delivery))

∧ @¬Obs,
(21)

Fig. 6. Simulated trajectories by the optimal policy in (a) and the Round-
Robin policy in (b). The line arrows represent the directions of movement
and the circle arrows represent the Stay action.

Fig. 7. (a) Normalized distribution of the plan suffix cost under the optimal
policy. (b) Normalized distribution of the violation cost under the Round-
Robin policy.

where ϕone = base1 ∨ base2 ∨ base3. The LTL formula
in (21) means that the agent visits one of the base stations
and then goes to one of the delivery stations while avoiding
obstacles. All base stations need to be visited. Based on
the environment and motion uncertainties, the LTL formula
ϕcase1 with respect to PL-MDP is feasible. The corresponding
LDBA has 35 states and 104 transitions, and the PL-MDP
has 28 states. It took 11.2s to construct the relaxed product
MDP and 0.15s to synthesize the optimal policy via Alg. 1.
To demonstrate the efficiency, we also compare the optimal
policies generated from this with the Round-Robin policy.

Fig. 6 (a) and (b) show the trajectories generated by our
optimal policy and the Round-Robin policy, respectively. The
arrows represent the directions of movement, and the circles
represent the Stay action. Clearly, the optimal policy is more
efficient in the sense that fewer cells were visited during
mission operation. In Fig. 7, 1000 Monte Carlo simulations
were conducted. Fig. 7 (a) shows the distribution of the plan
suffix cost. It indicates that, since the task is completely
feasible, the optimal policy in this work can always find
feasible plans with zero AVPS. Since Round-Robin policy
would select all available actions enabled at each state of
AMEC, Fig. 7 (b) shows the distribution of the violation cost
under Round-Robin policy.

Authorized licensed use limited to: The University of Iowa. Downloaded on January 01,2022 at 06:41:17 UTC from IEEE Xplore. Restrictions apply.

